Article

Innovating Hypertension Management Amongst Refugees in San Diego

4 min read

Refugees are a subset of the population that suffer displacement and other stressors, and once they reach their new home country, medical conditions including hypertension can go undetected and untreated. However, research into this very topic began in February 2021. The study entitled “Perceptions, Knowledge, and Attitudes Towards Hypertension Management among Refugees in San Diego” is being carried out by Dr. Tala Al-Rousan, a founding faculty member at the Herbert Wertheim School of Public Health at the University of California San Diego, in partnership with Dr. Job Godino who leads the Laura Rodriguez Research Institute at the Family Health Care Centers of San Diego.

Throughout the program, participants are using Withings BPM Connect, a smart blood pressure monitor, as well as the Withings Data Hub, a cellular gateway used to collect measurements. The study is funded by The National Heart, Lung, and Blood Institute of the US National Institutes of Health. It aims to contribute to a relatively small body of literature surrounding the unaddressed global challenge of uncontrolled blood pressure in displaced populations including refugees and asylum seekers. The problem of hypertension among displaced peoples is even more prevalent as the numbers of refugees continue to increase due to higher rates of violence, natural disasters, and health inequities.

A specific goal of the project is to examine the feasibility of self-administered blood pressure monitoring through supportive healthcare infrastructure. The study hopes to show preliminary data that refugee patients can and prefer to take leadership over their hypertension management from where they are residing in combination with receiving guidance on medication titration plans from their healthcare providers.

In combination with BPM Connect, Drs. Al-Rousan and Godino’s teams collect patient data using Withings remote patient monitoring (RPM) solution. Both device and RPM help solve several pain points that participants may face such as interrupted healthcare access, economic hardship, language barriers, and varying levels of health literacy and numeracy. Regarding interrupted access, going to the doctor can be difficult for participants as some may have employment that does not allow for brief leave from work; since the device can be used at home, less time needs to be budgeted. BPM Connect also uses one button to take measurements which reduces potential language and use factors. Finally, any question of whether participants can access the internet has been assuaged using Withings Data Hub, a cellular gateway that requires no installation from users and securely connects retrieved data to the Withings RPM solution without requiring a smartphone or Wi-Fi.

The study includes 80 Aramaic and Arabic-speaking refugees with diagnosed uncontrolled blood pressure. Participants were recruited in consultation with ethnic community-based organizations in San Diego that serve refugees including Al Majdal Center and others. Multicultural and multilingual investigators with expertise in refugee health, digital health, epidemiology, and chronic disease prevention are involved in the team.

The study asks participants to measure their blood pressure three times a day every other day for four weeks. Qualitative interviews are being conducted before and after the intervention period to understand the levels of acceptability of remote monitoring and whether participants feel more in control, empowered, aware, and engaged in better quality healthcare. Questions on the role of social networks in health education and medication adherence are also asked about in this study.

“This project is revolutionary in that it is the first of its kind to be addressing the unmet need of uncontrolled blood pressure, a silent killer to millions all over the world, in one of the most understudied and underserved populations which is the refugee population.” — Dr. Al-Rousan

An observation the team has noted in the program are the results of two randomized groups — one that receives in-person education about how to use BPM Connect and the other that receives the same education virtually. The virtual education group has not only received the intervention smoothly but actually preferred it over in-person instruction which may be explained by fears of contracting COVID, or simply convenience and saving on transportation and other costs. Additionally, the use of the BPM Connect has extended beyond the intended four-week intervention period.

The ongoing pandemic has highlighted health disparities that vulnerable populations face. Drs. Al-Rousan and Godino hope that this study will show how innovative digital health solutions fit within patients’ feelings of acceptance while displaying that taking healthcare to marginalized people’s homes enables these populations to relate to their health providers, engage in healthier behaviors, and better manage chronic diseases.

The study is now in the end phase and results will soon be published. For questions, please contact Dr. Tala Al-RousanTo find out more about how institutions are using BPM Connect and other connected health devices with the Withings Data Hub, you can visit Withings.com.

Don’t miss out,  subscribe to get the latest content updates.  

Related Content

WP_Query Object ( [query] => Array ( [post_type] => post [post_status] => publish [orderby] => date [order] => DESC [ignore_sticky_posts] => 1 [post__not_in] => Array ( [0] => 369 ) [cat] => 18 [posts_per_page] => 3 ) [query_vars] => Array ( [post_type] => post [post_status] => publish [orderby] => date [order] => DESC [ignore_sticky_posts] => 1 [post__not_in] => Array ( [0] => 369 ) [cat] => 18 [posts_per_page] => 3 [error] => [m] => [p] => 0 [post_parent] => [subpost] => [subpost_id] => [attachment] => [attachment_id] => 0 [name] => [pagename] => [page_id] => 0 [second] => [minute] => [hour] => [day] => 0 [monthnum] => 0 [year] => 0 [w] => 0 [category_name] => articles [tag] => [tag_id] => [author] => [author_name] => [feed] => [tb] => [paged] => 0 [meta_key] => [meta_value] => [preview] => [s] => [sentence] => [title] => [fields] => all [menu_order] => => [category__in] => Array ( ) [category__not_in] => Array ( ) [category__and] => Array ( ) [post__in] => Array ( ) [post_name__in] => Array ( ) [tag__in] => Array ( ) [tag__not_in] => Array ( ) [tag__and] => Array ( ) [tag_slug__in] => Array ( ) [tag_slug__and] => Array ( ) [post_parent__in] => Array ( ) [post_parent__not_in] => Array ( ) [author__in] => Array ( ) [author__not_in] => Array ( ) [search_columns] => Array ( ) [suppress_filters] => [cache_results] => 1 [update_post_term_cache] => 1 [update_menu_item_cache] => [lazy_load_term_meta] => 1 [update_post_meta_cache] => 1 [nopaging] => [comments_per_page] => 50 [no_found_rows] => ) [tax_query] => WP_Tax_Query Object ( [queries] => Array ( [0] => Array ( [taxonomy] => category [terms] => Array ( [0] => 18 ) [field] => term_id [operator] => IN [include_children] => 1 ) ) [relation] => AND [table_aliases:protected] => Array ( [0] => wp_term_relationships ) [queried_terms] => Array ( [category] => Array ( [terms] => Array ( [0] => 18 ) [field] => term_id ) ) [primary_table] => wp_posts [primary_id_column] => ID ) [meta_query] => WP_Meta_Query Object ( [queries] => Array ( ) [relation] => [meta_table] => [meta_id_column] => [primary_table] => [primary_id_column] => [table_aliases:protected] => Array ( ) [clauses:protected] => Array ( ) [has_or_relation:protected] => ) [date_query] => [request] => SELECT SQL_CALC_FOUND_ROWS wp_posts.ID FROM wp_posts LEFT JOIN wp_term_relationships ON (wp_posts.ID = wp_term_relationships.object_id) WHERE 1=1 AND wp_posts.ID NOT IN (369) AND ( wp_term_relationships.term_taxonomy_id IN (18) ) AND wp_posts.post_type = 'post' AND ((wp_posts.post_status = 'publish')) GROUP BY wp_posts.ID ORDER BY wp_posts.post_date DESC LIMIT 0, 3 [posts] => Array ( [0] => WP_Post Object ( [ID] => 2047 [post_author] => 11 [post_date] => 2025-10-06 19:26:35 [post_date_gmt] => 2025-10-06 19:26:35 [post_content] =>
Patrick Sheehan is a healthcare leader at the intersection of technology and care delivery, with a focus on virtual and at-home services for people with chronic conditions. At Withings, he serves as Vice President of Value-Based Care, partnering with risk-bearing organizations to design and scale programs that improve affordability, outcomes, and the care experience.

 

The Centers for Medicare & Medicaid Services (CMS) proposed a fee schedule that would drastically expand funding for remote patient management  — a move that could mark a turning point in how we think about healthcare delivery in America. If finalized, it would be more than a policy update; it would be a recognition that the future of healthcare lies in providing patients with a concierge-like experience focused on delivering care that is coordinated, comprehensive, and personalized. At Withings, we believe this shift is coming at exactly the right time. Digital health has proven it can improve access, but to truly improve outcomes and drive savings, it must go beyond the occasional video visit, the siloed widget, and the noisy data. It requires impactful patient engagement, integrated data communication, and the accessibility of evidence-based preventive care. That’s where our technology can make a measurable difference.

 

Our connected ecosystem for virtual heart health, anchored around award-winning medical devices, captures a breadth of biomarkers and patient-reported outcomes; everything from ECGs to body composition to symptom assessments—giving care teams an ongoing, comprehensive view of a patient’s cardiovascular function along with key metabolic and respiratory drivers. Paired with personalized care pathways, this actionable insight empowers patients to play an active role in their own care while enabling clinicians to deliver timely interventions. This means more healthy days at home and fewer costly, preventable acute care events.

 

The opportunity is only accelerating. Withings recently secured a large grant to develop advanced artificial intelligence that precisely detects risk based on multi-marker analysis of device-captured patient data. When applied to a Heart Failure population for example, this would enable intervention weeks prior to weight gain, and increase the likelihood of avoiding decompensation and an acute care event. It’s a leap from reactive to proactive care—one the healthcare system urgently needs.

 

CMS’s proposal creates the framework for digital health to play a cornerstone role in a future of healthcare that  places the patient at the center. This future of healthcare will be defined by its ability to predict and prevent, not just treat. With the right policies, technologies, and partnerships, we can make that future a reality now by giving patients more healthy days at home and delivering on the promise of a stronger, more sustainable healthcare system.

Interested in partnering with us?

Contact Us [post_title] => The Perfect Moment for Digital Health to Go Further by Patrick Sheehan [post_excerpt] => Patrick Sheehan is a healthcare leader at the intersection of technology and care delivery, with a focus on virtual and at-home services for people with chronic conditions. [post_status] => publish [comment_status] => closed [ping_status] => closed [post_password] => [post_name] => the-perfect-moment-for-digital-health-to-go-further-by-patrick-sheehan [to_ping] => [pinged] => [post_modified] => 2025-10-07 19:59:23 [post_modified_gmt] => 2025-10-07 19:59:23 [post_content_filtered] => [post_parent] => 0 [guid] => https://withingshealthsolutions.com/?p=2047 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [1] => WP_Post Object ( [ID] => 2034 [post_author] => 11 [post_date] => 2025-09-02 16:47:55 [post_date_gmt] => 2025-09-02 16:47:55 [post_content] =>

Introduction

Sleep is an essential pillar of health and well-being. The clinical gold standard for sleep assessment, polysomnography or PSG, provides a detailed analysis of sleep architecture but is impractical for routine or long-term monitoring. Its reliance on complex equipment, high cost, and typically in-lab application make it an intrusive process. The proliferation of consumer wearable and nearable devices offers more accessible alternatives, yet their accuracy often lacks rigorous scientific validation, particularly in home environments.

 

A recent study sought to address this gap by evaluating the accuracy and reliability of the Withings Sleep Analyzer (WSA). This contactless sleep mat, placed under the mattress, was compared directly against simultaneous PSG recordings in a large and diverse group of individuals in their own homes. This research investigates the sensor's performance in real-world conditions, offering critical insights into the current state of consumer sleep-tracking technology.

 

Methods

The study involved 117 healthy participants, with 69 women, and a mean age of approximately 40 years. Each participant slept in their own bed for one night with both the PSG equipment and the under-mattress device active. This setup allowed for a direct, epoch-by-epoch comparison of the data recorded by the consumer device against the clinical reference standard. The analysis focused on two primary objectives: the accuracy of distinguishing sleep from wakefulness and the precision of classifying distinct sleep stages, including light, deep, and REM sleep. Performance was assessed using standard classification metrics to ensure a robust evaluation.

 

Results

The investigation found that the contactless device performs effectively in identifying sleep and wake states. It achieved an overall accuracy of 87% in this core task, demonstrating a high sensitivity of 93% for detecting sleep and a moderate sensitivity of 73% for detecting wakefulness. A key strength observed was the sleep mat's consistent performance across various subgroups. The accuracy of sleep-wake detection remained stable regardless of participant age, BMI, sex, mattress type, mattress thickness, sleep quality or the presence of a bed partner.

 

Challenges emerged in the classification of specific sleep stages. The sensor's mean accuracy for staging sleep was 63%, with a Cohen’s Kappa of 0.49. The primary difficulty was in distinguishing between light and deep sleep. This led to systematic biases in sleep duration estimates; the device tended to slightly overestimate total sleep time by an average of 20 minutes but substantially overestimated light sleep by 1 hour and 21 minutes. Conversely, it moderately underestimated REM sleep by 15 minutes and deep sleep by a more significant 46 minutes.

 

Notably, a notable proportion of misclassifications made by the sensor mirrored disagreements found between the expert human reviewers who scored the PSG data, especially concerning the boundary between light and deep sleep. Furthermore, participants reported that their perceived sleep quality was significantly altered for the worse on the night they used the PSG equipment, highlighting the intrusive nature of the gold standard itself.

In a comparative context, the Withings Sleep Analyzer exhibits highly competitive performance in sleep-wake discrimination relative to other devices on the market. For the more nuanced task of sleep stage classification, its accuracy is comparable to that of similar products. This level of performance is particularly noteworthy given the systemic challenges in sleep staging.

 

Conclusion

For individuals seeking to understand their sleep over weeks and months, the primary benefit of a device like the Withings Sleep Analyzer lies in its practicality. Its contactless, 'set-and-forget' nature eliminates the nightly burden of wearing a device and avoids the discomfort that can disrupt sleep, a notable issue even with the clinical gold standard. While the sensor's accuracy in distinguishing specific sleep stages requires further refinement, its strong performance in tracking overall sleep and wake times provides reliable insights into sleep duration and consistency. This capability for accessible, unobtrusive, and longitudinal monitoring is where at-home sensors currently provide the most value, empowering users with meaningful data on their long-term sleep trends.

 

Poster Session: Time and Location

“Evaluation of a Contactless Sleep Monitoring Device for Sleep Stage Detection against Home Polysomnography in a Healthy Population”

 

Session Title: Poster abstract group 2

 

Session Date: Monday, September 8, 2025

 

Presentation Time: 6:00pm to 7:00pm (Presenting authors will be present near their assigned poster board throughout the scheduled one-hour presentation window.)

 

Poster Board Number: 531

 

Location: Posters will be displayed in the exhibit hall on Level 4 and accessible during regular congress hours.

About Marie-Ange Stefanos

Marie-Ange Stefanos is a  Machine Learning Research Scientist and a PhD candidate pursuing a joint doctorate in Computer Science and Neuroscience from Université Paris Cité (France) and Reykjavik University (Iceland). Building on her background with an Engineering degree in Signal Processing from Grenoble INP - Phelma and an M.Sc. in Machine Learning from KTH Royal Institute of Technology, her path into health research was driven by a central question: how can my technical background be best applied to solve meaningful challenges in human health?

 

Her doctoral research focuses on insomnia, where she develops algorithms using data from wearables and self-reports to identify predictive biomarkers and differentiate subtypes of the disorder. This work depends entirely on data integrity, which is why she believes the rigorous validation of consumer devices, as discussed in this article, is the essential first step in translating complex signals into reliable, actionable insights for users.

Interested in partnering with us?

Contact Us [post_title] => The Promise and Pitfalls of At-Home Sleep Tracking: A Deep Dive into the Withings Sleep Analyzer [post_excerpt] => Chronic Kidney Disease stage 5 on dialysis (CKD5D) presents one of the most complex and high-risk scenarios in modern medicine.But what if technology could help bridge the gap between dialysis sessions, offering clinicians a window into the patient's health in real-time? [post_status] => publish [comment_status] => closed [ping_status] => closed [post_password] => [post_name] => the-promise-and-pitfalls-of-at-home-sleep-tracking-a-deep-dive-into-the-withings-sleep-analyzer [to_ping] => [pinged] => [post_modified] => 2025-09-02 16:49:48 [post_modified_gmt] => 2025-09-02 16:49:48 [post_content_filtered] => [post_parent] => 0 [guid] => https://withingshealthsolutions.com/?p=2034 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [2] => WP_Post Object ( [ID] => 2015 [post_author] => 11 [post_date] => 2025-06-12 15:39:12 [post_date_gmt] => 2025-06-12 15:39:12 [post_content] =>

Chronic Kidney Disease stage 5 on dialysis (CKD5D) presents one of the most complex and high-risk scenarios in modern medicine. Among the many challenges faced by these patients, cardiovascular disease (CVD) stands out as the leading cause of mortality—a stark reminder of the systemic stress that accompanies kidney failure and dialysis.

 

But what if technology could help bridge the gap between dialysis sessions, offering clinicians a window into the patient's health in real-time? An article in Frontiers in Nephrology explores exactly that—highlighting the transformative potential of digital health technologies to monitor and manage CKD5D patients beyond the clinic.

 

The Hidden Risks Between Dialysis Sessions

For CKD5D patients, the risks of CVD are amplified by both traditional and disease-specific factors:

 

  • Traditional risks like hypertension, diabetes, and obesity.

  • CKD-specific risks such as inflammation, fluid overload, protein-energy wasting and vascular calcification.

  • The dialysis process itself, which induces rapid fluid shifts, blood pressure fluctuations, and metabolic imbalances.

Current clinical care models often focus on in-center dialysis data, leaving a crucial blind spot during the interdialytic period—a time when many adverse events begin to develop unnoticed.

 

A New Monitoring Paradigm: The Withings Toolkit

The article introduces a compelling case for home-based, connected health technologies—specifically, the Withings toolkit. This suite of medical-grade, consumer-friendly devices allows CKD patients to monitor key health indicators in the comfort of their homes:

 

  • Weight, body composition and ECG monitoring with the BodyScan smart scale.

  • Blood pressure, heart rate and survey responses for added context via BPM Pro 2.

  • Sleep quality and breathing event metrics using the Sleep Rx.

All data is seamlessly uploaded to the Withings Remote Patient Monitoring platform, providing healthcare providers and researchers with real-time, longitudinal insights into a patient’s well-being.

 

Why This Matters: Real-World Clinical Benefits

1. Early Detection of Complications

Weight gain could signal fluid retention, but muscle loss could indicate protein-energy wasting. A sudden spike in blood pressure or irregular heartbeat might indicate arrhythmias or volume overload. Poor sleep patterns could reflect apnea or restless leg syndrome—conditions with known ties to CKD.

2. Personalized, Data-Driven Care

These devices enable a dynamic view of health trends, allowing clinicians to tailor treatments proactively rather than reactively. Medication adjustments, fluid restrictions, or further diagnostics can be made with greater confidence.

3. Patient Empowerment

When patients can see and understand their own data, they become more engaged in their care. This promotes better self-management, increased treatment adherence, and a stronger sense of control over their condition.

4. Systemic Healthcare Advantages

Remote monitoring can reduce emergency visits and hospitalizations, easing the burden on overtaxed healthcare systems and offering a cost-effective alternative to frequent in-person evaluations.

 

The Future: Digital Tools as Standard of Care?

While still in its early stages, this integration of digital health into CKD care reflects a broader movement toward remote, preventative, and personalized medicine. The Withings case study serves as a promising example of how everyday technology can be adapted to serve complex clinical needs.

 

However, as the authors note, more clinical trials are needed to validate these tools in nephrology settings, establish protocols for data use, and ensure equitable access across diverse patient populations.

 

Final Thoughts

As we face growing rates of kidney disease and limited nephrology resources, connected health technologies offer a lifeline—not just to patients, but to an entire care infrastructure in need of modernization.

 

The Withings toolkit is more than a gadget suite; it's a glimpse into the future of chronic disease management, where data flows continuously, care is adaptive, and patients are active participants in their own health journey.

 

References
Article: Frontiers in Nephrology, 2023 - DOI: 10.3389/fneph.2023.1148565

Interested in partnering with us?

Contact Us [post_title] => Revolutionizing Chronic Kidney Disease Management with Digital Health Tools: The Withings Case Study [post_excerpt] => Chronic Kidney Disease stage 5 on dialysis (CKD5D) presents one of the most complex and high-risk scenarios in modern medicine.But what if technology could help bridge the gap between dialysis sessions, offering clinicians a window into the patient's health in real-time? [post_status] => publish [comment_status] => closed [ping_status] => closed [post_password] => [post_name] => revolutionizing-chronic-kidney-disease-management-with-digital-health-tools-the-withings-case-study [to_ping] => [pinged] => [post_modified] => 2025-06-12 15:41:31 [post_modified_gmt] => 2025-06-12 15:41:31 [post_content_filtered] => [post_parent] => 0 [guid] => https://withingshealthsolutions.com/?p=2015 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) ) [post_count] => 3 [current_post] => -1 [before_loop] => 1 [in_the_loop] => [post] => WP_Post Object ( [ID] => 2047 [post_author] => 11 [post_date] => 2025-10-06 19:26:35 [post_date_gmt] => 2025-10-06 19:26:35 [post_content] =>
Patrick Sheehan is a healthcare leader at the intersection of technology and care delivery, with a focus on virtual and at-home services for people with chronic conditions. At Withings, he serves as Vice President of Value-Based Care, partnering with risk-bearing organizations to design and scale programs that improve affordability, outcomes, and the care experience.

 

The Centers for Medicare & Medicaid Services (CMS) proposed a fee schedule that would drastically expand funding for remote patient management  — a move that could mark a turning point in how we think about healthcare delivery in America. If finalized, it would be more than a policy update; it would be a recognition that the future of healthcare lies in providing patients with a concierge-like experience focused on delivering care that is coordinated, comprehensive, and personalized. At Withings, we believe this shift is coming at exactly the right time. Digital health has proven it can improve access, but to truly improve outcomes and drive savings, it must go beyond the occasional video visit, the siloed widget, and the noisy data. It requires impactful patient engagement, integrated data communication, and the accessibility of evidence-based preventive care. That’s where our technology can make a measurable difference.

 

Our connected ecosystem for virtual heart health, anchored around award-winning medical devices, captures a breadth of biomarkers and patient-reported outcomes; everything from ECGs to body composition to symptom assessments—giving care teams an ongoing, comprehensive view of a patient’s cardiovascular function along with key metabolic and respiratory drivers. Paired with personalized care pathways, this actionable insight empowers patients to play an active role in their own care while enabling clinicians to deliver timely interventions. This means more healthy days at home and fewer costly, preventable acute care events.

 

The opportunity is only accelerating. Withings recently secured a large grant to develop advanced artificial intelligence that precisely detects risk based on multi-marker analysis of device-captured patient data. When applied to a Heart Failure population for example, this would enable intervention weeks prior to weight gain, and increase the likelihood of avoiding decompensation and an acute care event. It’s a leap from reactive to proactive care—one the healthcare system urgently needs.

 

CMS’s proposal creates the framework for digital health to play a cornerstone role in a future of healthcare that  places the patient at the center. This future of healthcare will be defined by its ability to predict and prevent, not just treat. With the right policies, technologies, and partnerships, we can make that future a reality now by giving patients more healthy days at home and delivering on the promise of a stronger, more sustainable healthcare system.

Interested in partnering with us?

Contact Us [post_title] => The Perfect Moment for Digital Health to Go Further by Patrick Sheehan [post_excerpt] => Patrick Sheehan is a healthcare leader at the intersection of technology and care delivery, with a focus on virtual and at-home services for people with chronic conditions. [post_status] => publish [comment_status] => closed [ping_status] => closed [post_password] => [post_name] => the-perfect-moment-for-digital-health-to-go-further-by-patrick-sheehan [to_ping] => [pinged] => [post_modified] => 2025-10-07 19:59:23 [post_modified_gmt] => 2025-10-07 19:59:23 [post_content_filtered] => [post_parent] => 0 [guid] => https://withingshealthsolutions.com/?p=2047 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [comment_count] => 0 [current_comment] => -1 [found_posts] => 50 [max_num_pages] => 17 [max_num_comment_pages] => 0 [is_single] => [is_preview] => [is_page] => [is_archive] => 1 [is_date] => [is_year] => [is_month] => [is_day] => [is_time] => [is_author] => [is_category] => 1 [is_tag] => [is_tax] => [is_search] => [is_feed] => [is_comment_feed] => [is_trackback] => [is_home] => [is_privacy_policy] => [is_404] => [is_embed] => [is_paged] => [is_admin] => [is_attachment] => [is_singular] => [is_robots] => [is_favicon] => [is_posts_page] => [is_post_type_archive] => [query_vars_hash:WP_Query:private] => 4c4cccd009c84d2156f7c3abc8b35a49 [query_vars_changed:WP_Query:private] => [thumbnails_cached] => [allow_query_attachment_by_filename:protected] => [stopwords:WP_Query:private] => [compat_fields:WP_Query:private] => Array ( [0] => query_vars_hash [1] => query_vars_changed ) [compat_methods:WP_Query:private] => Array ( [0] => init_query_flags [1] => parse_tax_query ) [query_cache_key:WP_Query:private] => wp_query:3d63db898e9a07f0f3625bed34dcd3ac:0.61922200 17612992310.80285600 1761298959 )
Article

The Perfect Moment for Digital Health to Go Further by Patrick Sheehan

Read More
Article

The Promise and Pitfalls of At-Home Sleep Tracking: A Deep Dive into the Withings Sleep Analyzer

Read More
Article

Revolutionizing Chronic Kidney Disease Management with Digital Health Tools: The Withings Case Study

Read More

Withings On-The-Go

Our patient-centric care solution utilizes portable Withings cellular devices that are not tied to a single patient. Instead, care teams can use one device to collect and transmit data for an unlimited number of individuals. The integrated cellular connectivity automatically directs the data into the correct patient’s medical record, simplifying data collection and improving care delivery regardless of the setting.