Article

Innovating Hypertension Management Amongst Refugees in San Diego

4 min read

Refugees are a subset of the population that suffer displacement and other stressors, and once they reach their new home country, medical conditions including hypertension can go undetected and untreated. However, research into this very topic began in February 2021. The study entitled “Perceptions, Knowledge, and Attitudes Towards Hypertension Management among Refugees in San Diego” is being carried out by Dr. Tala Al-Rousan, a founding faculty member at the Herbert Wertheim School of Public Health at the University of California San Diego, in partnership with Dr. Job Godino who leads the Laura Rodriguez Research Institute at the Family Health Care Centers of San Diego.

Throughout the program, participants are using Withings BPM Connect, a smart blood pressure monitor, as well as the Withings Data Hub, a cellular gateway used to collect measurements. The study is funded by The National Heart, Lung, and Blood Institute of the US National Institutes of Health. It aims to contribute to a relatively small body of literature surrounding the unaddressed global challenge of uncontrolled blood pressure in displaced populations including refugees and asylum seekers. The problem of hypertension among displaced peoples is even more prevalent as the numbers of refugees continue to increase due to higher rates of violence, natural disasters, and health inequities.

A specific goal of the project is to examine the feasibility of self-administered blood pressure monitoring through supportive healthcare infrastructure. The study hopes to show preliminary data that refugee patients can and prefer to take leadership over their hypertension management from where they are residing in combination with receiving guidance on medication titration plans from their healthcare providers.

In combination with BPM Connect, Drs. Al-Rousan and Godino’s teams collect patient data using Withings remote patient monitoring (RPM) solution. Both device and RPM help solve several pain points that participants may face such as interrupted healthcare access, economic hardship, language barriers, and varying levels of health literacy and numeracy. Regarding interrupted access, going to the doctor can be difficult for participants as some may have employment that does not allow for brief leave from work; since the device can be used at home, less time needs to be budgeted. BPM Connect also uses one button to take measurements which reduces potential language and use factors. Finally, any question of whether participants can access the internet has been assuaged using Withings Data Hub, a cellular gateway that requires no installation from users and securely connects retrieved data to the Withings RPM solution without requiring a smartphone or Wi-Fi.

The study includes 80 Aramaic and Arabic-speaking refugees with diagnosed uncontrolled blood pressure. Participants were recruited in consultation with ethnic community-based organizations in San Diego that serve refugees including Al Majdal Center and others. Multicultural and multilingual investigators with expertise in refugee health, digital health, epidemiology, and chronic disease prevention are involved in the team.

The study asks participants to measure their blood pressure three times a day every other day for four weeks. Qualitative interviews are being conducted before and after the intervention period to understand the levels of acceptability of remote monitoring and whether participants feel more in control, empowered, aware, and engaged in better quality healthcare. Questions on the role of social networks in health education and medication adherence are also asked about in this study.

“This project is revolutionary in that it is the first of its kind to be addressing the unmet need of uncontrolled blood pressure, a silent killer to millions all over the world, in one of the most understudied and underserved populations which is the refugee population.” — Dr. Al-Rousan

An observation the team has noted in the program are the results of two randomized groups — one that receives in-person education about how to use BPM Connect and the other that receives the same education virtually. The virtual education group has not only received the intervention smoothly but actually preferred it over in-person instruction which may be explained by fears of contracting COVID, or simply convenience and saving on transportation and other costs. Additionally, the use of the BPM Connect has extended beyond the intended four-week intervention period.

The ongoing pandemic has highlighted health disparities that vulnerable populations face. Drs. Al-Rousan and Godino hope that this study will show how innovative digital health solutions fit within patients’ feelings of acceptance while displaying that taking healthcare to marginalized people’s homes enables these populations to relate to their health providers, engage in healthier behaviors, and better manage chronic diseases.

The study is now in the end phase and results will soon be published. For questions, please contact Dr. Tala Al-RousanTo find out more about how institutions are using BPM Connect and other connected health devices with the Withings Data Hub, you can visit Withings.com.

Don’t miss out,  subscribe to get the latest content updates.  

Related Content

WP_Query Object ( [query] => Array ( [post_type] => post [post_status] => publish [orderby] => date [order] => DESC [ignore_sticky_posts] => 1 [post__not_in] => Array ( [0] => 369 ) [cat] => 18 [posts_per_page] => 3 ) [query_vars] => Array ( [post_type] => post [post_status] => publish [orderby] => date [order] => DESC [ignore_sticky_posts] => 1 [post__not_in] => Array ( [0] => 369 ) [cat] => 18 [posts_per_page] => 3 [error] => [m] => [p] => 0 [post_parent] => [subpost] => [subpost_id] => [attachment] => [attachment_id] => 0 [name] => [pagename] => [page_id] => 0 [second] => [minute] => [hour] => [day] => 0 [monthnum] => 0 [year] => 0 [w] => 0 [category_name] => articles [tag] => [tag_id] => [author] => [author_name] => [feed] => [tb] => [paged] => 0 [meta_key] => [meta_value] => [preview] => [s] => [sentence] => [title] => [fields] => all [menu_order] => => [category__in] => Array ( ) [category__not_in] => Array ( ) [category__and] => Array ( ) [post__in] => Array ( ) [post_name__in] => Array ( ) [tag__in] => Array ( ) [tag__not_in] => Array ( ) [tag__and] => Array ( ) [tag_slug__in] => Array ( ) [tag_slug__and] => Array ( ) [post_parent__in] => Array ( ) [post_parent__not_in] => Array ( ) [author__in] => Array ( ) [author__not_in] => Array ( ) [search_columns] => Array ( ) [suppress_filters] => [cache_results] => 1 [update_post_term_cache] => 1 [update_menu_item_cache] => [lazy_load_term_meta] => 1 [update_post_meta_cache] => 1 [nopaging] => [comments_per_page] => 50 [no_found_rows] => ) [tax_query] => WP_Tax_Query Object ( [queries] => Array ( [0] => Array ( [taxonomy] => category [terms] => Array ( [0] => 18 ) [field] => term_id [operator] => IN [include_children] => 1 ) ) [relation] => AND [table_aliases:protected] => Array ( [0] => wp_term_relationships ) [queried_terms] => Array ( [category] => Array ( [terms] => Array ( [0] => 18 ) [field] => term_id ) ) [primary_table] => wp_posts [primary_id_column] => ID ) [meta_query] => WP_Meta_Query Object ( [queries] => Array ( ) [relation] => [meta_table] => [meta_id_column] => [primary_table] => [primary_id_column] => [table_aliases:protected] => Array ( ) [clauses:protected] => Array ( ) [has_or_relation:protected] => ) [date_query] => [request] => SELECT SQL_CALC_FOUND_ROWS wp_posts.ID FROM wp_posts LEFT JOIN wp_term_relationships ON (wp_posts.ID = wp_term_relationships.object_id) WHERE 1=1 AND wp_posts.ID NOT IN (369) AND ( wp_term_relationships.term_taxonomy_id IN (18) ) AND wp_posts.post_type = 'post' AND ((wp_posts.post_status = 'publish')) GROUP BY wp_posts.ID ORDER BY wp_posts.post_date DESC LIMIT 0, 3 [posts] => Array ( [0] => WP_Post Object ( [ID] => 2015 [post_author] => 11 [post_date] => 2025-06-12 15:39:12 [post_date_gmt] => 2025-06-12 15:39:12 [post_content] =>

Chronic Kidney Disease stage 5 on dialysis (CKD5D) presents one of the most complex and high-risk scenarios in modern medicine. Among the many challenges faced by these patients, cardiovascular disease (CVD) stands out as the leading cause of mortality—a stark reminder of the systemic stress that accompanies kidney failure and dialysis.

 

But what if technology could help bridge the gap between dialysis sessions, offering clinicians a window into the patient's health in real-time? An article in Frontiers in Nephrology explores exactly that—highlighting the transformative potential of digital health technologies to monitor and manage CKD5D patients beyond the clinic.

 

The Hidden Risks Between Dialysis Sessions

For CKD5D patients, the risks of CVD are amplified by both traditional and disease-specific factors:

 

  • Traditional risks like hypertension, diabetes, and obesity.

  • CKD-specific risks such as inflammation, fluid overload, protein-energy wasting and vascular calcification.

  • The dialysis process itself, which induces rapid fluid shifts, blood pressure fluctuations, and metabolic imbalances.

Current clinical care models often focus on in-center dialysis data, leaving a crucial blind spot during the interdialytic period—a time when many adverse events begin to develop unnoticed.

 

A New Monitoring Paradigm: The Withings Toolkit

The article introduces a compelling case for home-based, connected health technologies—specifically, the Withings toolkit. This suite of medical-grade, consumer-friendly devices allows CKD patients to monitor key health indicators in the comfort of their homes:

 

  • Weight, body composition and ECG monitoring with the BodyScan smart scale.

  • Blood pressure, heart rate and survey responses for added context via BPM Pro 2.

  • Sleep quality and breathing event metrics using the Sleep Rx.

All data is seamlessly uploaded to the Withings Remote Patient Monitoring platform, providing healthcare providers and researchers with real-time, longitudinal insights into a patient’s well-being.

 

Why This Matters: Real-World Clinical Benefits

1. Early Detection of Complications

Weight gain could signal fluid retention, but muscle loss could indicate protein-energy wasting. A sudden spike in blood pressure or irregular heartbeat might indicate arrhythmias or volume overload. Poor sleep patterns could reflect apnea or restless leg syndrome—conditions with known ties to CKD.

2. Personalized, Data-Driven Care

These devices enable a dynamic view of health trends, allowing clinicians to tailor treatments proactively rather than reactively. Medication adjustments, fluid restrictions, or further diagnostics can be made with greater confidence.

3. Patient Empowerment

When patients can see and understand their own data, they become more engaged in their care. This promotes better self-management, increased treatment adherence, and a stronger sense of control over their condition.

4. Systemic Healthcare Advantages

Remote monitoring can reduce emergency visits and hospitalizations, easing the burden on overtaxed healthcare systems and offering a cost-effective alternative to frequent in-person evaluations.

 

The Future: Digital Tools as Standard of Care?

While still in its early stages, this integration of digital health into CKD care reflects a broader movement toward remote, preventative, and personalized medicine. The Withings case study serves as a promising example of how everyday technology can be adapted to serve complex clinical needs.

 

However, as the authors note, more clinical trials are needed to validate these tools in nephrology settings, establish protocols for data use, and ensure equitable access across diverse patient populations.

 

Final Thoughts

As we face growing rates of kidney disease and limited nephrology resources, connected health technologies offer a lifeline—not just to patients, but to an entire care infrastructure in need of modernization.

 

The Withings toolkit is more than a gadget suite; it's a glimpse into the future of chronic disease management, where data flows continuously, care is adaptive, and patients are active participants in their own health journey.

 

References
Article: Frontiers in Nephrology, 2023 - DOI: 10.3389/fneph.2023.1148565

Interested in partnering with us?

Contact Us [post_title] => Revolutionizing Chronic Kidney Disease Management with Digital Health Tools: The Withings Case Study [post_excerpt] => Chronic Kidney Disease stage 5 on dialysis (CKD5D) presents one of the most complex and high-risk scenarios in modern medicine.But what if technology could help bridge the gap between dialysis sessions, offering clinicians a window into the patient's health in real-time? [post_status] => publish [comment_status] => closed [ping_status] => closed [post_password] => [post_name] => revolutionizing-chronic-kidney-disease-management-with-digital-health-tools-the-withings-case-study [to_ping] => [pinged] => [post_modified] => 2025-06-12 15:41:31 [post_modified_gmt] => 2025-06-12 15:41:31 [post_content_filtered] => [post_parent] => 0 [guid] => https://withingshealthsolutions.com/?p=2015 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [1] => WP_Post Object ( [ID] => 2012 [post_author] => 11 [post_date] => 2025-06-03 19:17:23 [post_date_gmt] => 2025-06-03 19:17:23 [post_content] =>

Introduction

 

Diabetic foot ulcers (DFUs) are a major and often debilitating complication of diabetes, contributing significantly to patient morbidity, mortality, and healthcare costs. Despite advancements in diabetes care, the incidence of DFUs remains high, with a substantial impact on quality of life and healthcare resources. A recent study published in the journal Frontiers in Endocrinology compared the use of electrochemical skin conductance (ESC) to the current standards in DFU detection. The current method for assessing DFU risk primarily involves clinical examination, including the monofilament test, which is subjective and dependent on the examiner’s skills. Therefore, there is a need for objective, reproducible, and reliable methods for early detection of at-risk patients.

 

One of the many complications of diabetes is peripheral neuropathy, which, if left untreated, can lead to DFUs. Electrochemical Skin Conductance (ESC) is a promising non-invasive diagnostic tool that can be used to assess autonomic nerve activity. ESC is measured in-clinic using Sudoscan, which assesses small fiber peripheral neuropathies, specifically the innervation around the sweat glands, by stimulating the glands and measuring the conductance (in µS) of chloride ions contained in the sweat. Lower ESC values indicate more severe neuropathy. This study investigates the association between ESC and DFU risk stratification, offering a potential new approach to managing and preventing diabetic foot complications.

Methods

 

This study was a retrospective analysis involving 2,149 diabetic patients from four clinics in Greater Paris University Hospitals, the largest hospital system in Europe and one of the largest in the world. The primary aim was to evaluate the relationship between ESC measurements and DFU risk, as classified using the 2016 International Working Group on Diabetic Foot (IWGDF) grading system. This grading system assigns DFU risk based on clinical evaluation, including the presence of neuropathy, ulceration, and other factors.

To assess the predictive performance of ESC in DFU risk stratification, the study incorporated a range of factors: age, sex, type of diabetes, and results from the monofilament test, which is a standard assessment of peripheral neuropathy. The study employed regression and Receiver Operating Characteristic (ROC) analyses to explore the predictive value of ESC measurements for different DFU risk categories.

 

Results

 

The study revealed a significant correlation between ESC values and DFU risk grades (p<0.001). Specifically, lower FESC values were associated with higher grades of DFU risk, suggesting that reduced sweat gland function, indicative of small fiber neuropathy, plays a role in the progression of foot ulcers in diabetic patients.

 

One of the most noteworthy findings of this study was that ESC measurements were able to identify patients at risk for DFUs who would not have been classified as high risk using the standard IWGDF grading system. Specifically, ESC detected autonomic dysfunction and small fiber nerve involvement in 43% patients classified as grade 0 (13% with severe cases of neuropathy), who otherwise showed no obvious signs of risk through traditional assessments, showing better granularity in the lower grades for better risk stratification.

 

The findings of this study suggest that Electrochemical Skin Conductance (ESC) provides a valuable, reproducible, and operator-independent tool for assessing DFU risk. ESC measurements offer an objective method for identifying early signs of small fiber neuropathy, a critical factor in the development of DFUs. Unlike traditional risk stratification, which relies heavily on clinical judgment and may overlook early-stage neuropathy, ESC can detect subtle changes in nerve function that precede visible foot ulcers.

 

The ability of ESC to detect at-risk patients in the grade 0 category, who would otherwise be overlooked by conventional classification methods, highlights its potential role in preventing DFUs. By identifying patients with early-stage nerve dysfunction, ESC could facilitate earlier intervention, potentially reducing the incidence of foot ulcers, amputations, and associated healthcare costs.

 

The ability to detect DFU risk early using ESC shows promise for the prevention of amputation.Therefore, we conclude that feet skin conductance is a relevant parameter for detecting diabetic foot syndrome, specifically at an early stage when there is still no presence of feet ulceration or wounds. A recent meta-analysis on ESC supports this conclusion, indicating that ESC, when combined with temperature measurements, serves as a valuable tool for the early detection of diabetic foot syndrome. ESC can be measured in-clinic, using Sudoscan, and at home using Withings Body Pro 2. Measuring ESC through home use of the Body Pro 2 scale allows for additional data collection and better assessment of trends and progression between appointments. Through this enhanced monitoring of DFU risk, care teams can better risk-stratify and provide targeted care that could prevent amputations and complications.

Interested in partnering with us?

Contact Us [post_title] => Electrochemical Skin Conductance as a Novel Tool for Diabetic Foot Ulcer Risk Stratification and Prevention [post_excerpt] => Diabetic foot ulcers (DFUs) are a major and often debilitating complication of diabetes, contributing significantly to patient morbidity, mortality, and healthcare costs.Electrochemical Skin Conductance (ESC) is a promising non-invasive diagnostic tool that can be used to assess autonomic nerve activity. [post_status] => publish [comment_status] => closed [ping_status] => closed [post_password] => [post_name] => electrochemical-skin-conductance-as-a-novel-tool-for-diabetic-foot-ulcer-risk-stratification-and-prevention [to_ping] => [pinged] => [post_modified] => 2025-06-16 13:31:21 [post_modified_gmt] => 2025-06-16 13:31:21 [post_content_filtered] => [post_parent] => 0 [guid] => https://withingshealthsolutions.com/?p=2012 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [2] => WP_Post Object ( [ID] => 2005 [post_author] => 11 [post_date] => 2025-05-29 18:17:36 [post_date_gmt] => 2025-05-29 18:17:36 [post_content] =>

Menopause can significantly impact sleep, blood pressure, and body composition—and it goes far beyond hot flashes.

As estrogen and progesterone levels decline, the risk of obstructive sleep apnea (OSA) increases. These hormones help keep airway muscles strong and support stable breathing during sleep. When they drop, the airway is more likely to collapse during the night. Combined with menopause-related weight gain, this can significantly heighten the risk. According to the Sleep Foundation and Mayo Clinic, postmenopausal women are more prone to sleep apnea, even if they hadn’t previously experienced symptoms.

 

Menopause also increases the risk of hypertension. Lower estrogen levels reduce blood vessel flexibility, making it harder for blood to flow efficiently. Coupled with changes in weight, cholesterol, and insulin sensitivity, blood pressure tends to rise. The American Heart Association highlights that the risk of heart disease, including high blood pressure, climbs sharply in postmenopausal women—making routine monitoring all the more important.

 

Body composition also shifts during menopause. Fat tends to accumulate around the abdomen—even if overall weight remains stable—due to hormonal changes. This increase in visceral fat, which surrounds internal organs, is linked to elevated risks of cardiovascular disease, type 2 diabetes, and certain cancers. A University of Pittsburgh study found that for every 20% increase in abdominal fat, artery thickness, a key marker of heart disease risk, also increased. The Mayo Clinic reinforces the importance of addressing these changes through exercise, strength training, and healthy eating.

 

Monitoring these health changes is crucial for comprehensive menopause care. Withings Health Solutions can help. Withings offers clinically validated devices that make it easy to track vital health metrics from home. Body Pro 2 measures not just weight, but also body fat, visceral fat and muscle mass—providing a deeper understanding of your cardiovascular health. Sleep Rx aids in the detection of sleep apnea without requiring a wearable, while the BPM Pro 2 enables simple, accurate blood pressure monitoring.

 

Connected health devices offer a powerful way to enhance care and demonstrate measurable outcomes. As menopause impacts everything from sleep and blood pressure to weight and long-term cardiovascular health, cellular-connected devices—like Body Pro 2, BPM Pro 2, and Sleep Rx—enable real-time tracking of key metrics. These insights help patients and users better manage symptoms and allow care teams to personalize support. Just as importantly, aggregated health data can validate the impact of your solution, making it easier to show ROI to employers and insurers and improve engagement across populations.

Interested in partnering with us?

Contact Us [post_title] => The Need for Remote Patient Monitoring in Menopause Care [post_excerpt] => Menopause can significantly impact sleep, blood pressure, and body composition—and it goes far beyond hot flashes. Connected devices can enable comprehensive care and proof of ROI for menopause benefits. [post_status] => publish [comment_status] => closed [ping_status] => closed [post_password] => [post_name] => the-need-for-remote-patient-monitoring-in-menopause-care [to_ping] => [pinged] => [post_modified] => 2025-05-29 18:19:03 [post_modified_gmt] => 2025-05-29 18:19:03 [post_content_filtered] => [post_parent] => 0 [guid] => https://withingshealthsolutions.com/?p=2005 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) ) [post_count] => 3 [current_post] => -1 [before_loop] => 1 [in_the_loop] => [post] => WP_Post Object ( [ID] => 2015 [post_author] => 11 [post_date] => 2025-06-12 15:39:12 [post_date_gmt] => 2025-06-12 15:39:12 [post_content] =>

Chronic Kidney Disease stage 5 on dialysis (CKD5D) presents one of the most complex and high-risk scenarios in modern medicine. Among the many challenges faced by these patients, cardiovascular disease (CVD) stands out as the leading cause of mortality—a stark reminder of the systemic stress that accompanies kidney failure and dialysis.

 

But what if technology could help bridge the gap between dialysis sessions, offering clinicians a window into the patient's health in real-time? An article in Frontiers in Nephrology explores exactly that—highlighting the transformative potential of digital health technologies to monitor and manage CKD5D patients beyond the clinic.

 

The Hidden Risks Between Dialysis Sessions

For CKD5D patients, the risks of CVD are amplified by both traditional and disease-specific factors:

 

  • Traditional risks like hypertension, diabetes, and obesity.

  • CKD-specific risks such as inflammation, fluid overload, protein-energy wasting and vascular calcification.

  • The dialysis process itself, which induces rapid fluid shifts, blood pressure fluctuations, and metabolic imbalances.

Current clinical care models often focus on in-center dialysis data, leaving a crucial blind spot during the interdialytic period—a time when many adverse events begin to develop unnoticed.

 

A New Monitoring Paradigm: The Withings Toolkit

The article introduces a compelling case for home-based, connected health technologies—specifically, the Withings toolkit. This suite of medical-grade, consumer-friendly devices allows CKD patients to monitor key health indicators in the comfort of their homes:

 

  • Weight, body composition and ECG monitoring with the BodyScan smart scale.

  • Blood pressure, heart rate and survey responses for added context via BPM Pro 2.

  • Sleep quality and breathing event metrics using the Sleep Rx.

All data is seamlessly uploaded to the Withings Remote Patient Monitoring platform, providing healthcare providers and researchers with real-time, longitudinal insights into a patient’s well-being.

 

Why This Matters: Real-World Clinical Benefits

1. Early Detection of Complications

Weight gain could signal fluid retention, but muscle loss could indicate protein-energy wasting. A sudden spike in blood pressure or irregular heartbeat might indicate arrhythmias or volume overload. Poor sleep patterns could reflect apnea or restless leg syndrome—conditions with known ties to CKD.

2. Personalized, Data-Driven Care

These devices enable a dynamic view of health trends, allowing clinicians to tailor treatments proactively rather than reactively. Medication adjustments, fluid restrictions, or further diagnostics can be made with greater confidence.

3. Patient Empowerment

When patients can see and understand their own data, they become more engaged in their care. This promotes better self-management, increased treatment adherence, and a stronger sense of control over their condition.

4. Systemic Healthcare Advantages

Remote monitoring can reduce emergency visits and hospitalizations, easing the burden on overtaxed healthcare systems and offering a cost-effective alternative to frequent in-person evaluations.

 

The Future: Digital Tools as Standard of Care?

While still in its early stages, this integration of digital health into CKD care reflects a broader movement toward remote, preventative, and personalized medicine. The Withings case study serves as a promising example of how everyday technology can be adapted to serve complex clinical needs.

 

However, as the authors note, more clinical trials are needed to validate these tools in nephrology settings, establish protocols for data use, and ensure equitable access across diverse patient populations.

 

Final Thoughts

As we face growing rates of kidney disease and limited nephrology resources, connected health technologies offer a lifeline—not just to patients, but to an entire care infrastructure in need of modernization.

 

The Withings toolkit is more than a gadget suite; it's a glimpse into the future of chronic disease management, where data flows continuously, care is adaptive, and patients are active participants in their own health journey.

 

References
Article: Frontiers in Nephrology, 2023 - DOI: 10.3389/fneph.2023.1148565

Interested in partnering with us?

Contact Us [post_title] => Revolutionizing Chronic Kidney Disease Management with Digital Health Tools: The Withings Case Study [post_excerpt] => Chronic Kidney Disease stage 5 on dialysis (CKD5D) presents one of the most complex and high-risk scenarios in modern medicine.But what if technology could help bridge the gap between dialysis sessions, offering clinicians a window into the patient's health in real-time? [post_status] => publish [comment_status] => closed [ping_status] => closed [post_password] => [post_name] => revolutionizing-chronic-kidney-disease-management-with-digital-health-tools-the-withings-case-study [to_ping] => [pinged] => [post_modified] => 2025-06-12 15:41:31 [post_modified_gmt] => 2025-06-12 15:41:31 [post_content_filtered] => [post_parent] => 0 [guid] => https://withingshealthsolutions.com/?p=2015 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [comment_count] => 0 [current_comment] => -1 [found_posts] => 48 [max_num_pages] => 16 [max_num_comment_pages] => 0 [is_single] => [is_preview] => [is_page] => [is_archive] => 1 [is_date] => [is_year] => [is_month] => [is_day] => [is_time] => [is_author] => [is_category] => 1 [is_tag] => [is_tax] => [is_search] => [is_feed] => [is_comment_feed] => [is_trackback] => [is_home] => [is_privacy_policy] => [is_404] => [is_embed] => [is_paged] => [is_admin] => [is_attachment] => [is_singular] => [is_robots] => [is_favicon] => [is_posts_page] => [is_post_type_archive] => [query_vars_hash:WP_Query:private] => 4c4cccd009c84d2156f7c3abc8b35a49 [query_vars_changed:WP_Query:private] => [thumbnails_cached] => [allow_query_attachment_by_filename:protected] => [stopwords:WP_Query:private] => [compat_fields:WP_Query:private] => Array ( [0] => query_vars_hash [1] => query_vars_changed ) [compat_methods:WP_Query:private] => Array ( [0] => init_query_flags [1] => parse_tax_query ) [query_cache_key:WP_Query:private] => wp_query:3d63db898e9a07f0f3625bed34dcd3ac:0.25611700 17519546010.25601300 1751954601 )
Article

Revolutionizing Chronic Kidney Disease Management with Digital Health Tools: The Withings Case Study

Read More
Article

Electrochemical Skin Conductance as a Novel Tool for Diabetic Foot Ulcer Risk Stratification and Prevention

Read More
Article

The Need for Remote Patient Monitoring in Menopause Care

Read More

Withings On-The-Go

Our patient-centric care solution utilizes portable Withings cellular devices that are not tied to a single patient. Instead, care teams can use one device to collect and transmit data for an unlimited number of individuals. The integrated cellular connectivity automatically directs the data into the correct patient’s medical record, simplifying data collection and improving care delivery regardless of the setting.