Meet with us at VIVE 2024!
Article

Evolution of the digital health spectrum of care

5 min read

A post written by Jessica Shull (Digital Therapeutics Alliance), Dr. Keith Grimes (Babylon Health), and Alexandra Yembele (Withings). Last edit: October, 8th

Health systems are evolving beyond the doctor’s office

Countries aim to improve current standards of care for their populations while developing novel ways to treat patients with acute health conditions. This evolution has only quickened in the midst of a continuously shifting pandemic, and the result of this adaptation is the adoption of digital health technologies (DHT). Although DHT has been developing for the last 20 years, the physical dangers of being together during a pandemic has sped up the need for doctors to be able to collect actionable insights and extend care beyond the office setting. The advances in DHT could offer integrated care for whole populations in countries across the globe while providing tools so that potentially, no one is left behind.

New solutions for new challenges

There are several examples that show how healthcare systems are adopting innovative pathways for DHTs. Three examples include:

  • Regulatory authorities in Germany have now approved digital therapies and diagnostics which may be prescribed nationally to 78 million people;
  • As part of insurance benefits in some countries, employers are utilizing connected devices like sleep trackers and heart rate monitors to encourage employees to improve health indicators;
  • In 2019, few physicians in Germany utilized telemedicine platforms (virtual visits with patients via phone or online), but this year there was a 200% increase in some parts of the country due to the pandemic.

These examples highlight countries’ need to find new ways to interact with patients and provide care within existing healthcare systems.

The best-case scenario is when these three resources — digital therapeutics, remote patient monitoring, and telemedicine platforms — work together. This trio of digital health technologies can be used to assist a wide variety of patients including those who have for example, hypertension, diabetes, implant receivers, and or COPD.

The ideal DHT Combination

The European Respiratory Society estimates 15–20% of adults over 40 in Europe suffer from this Chronic Obstructive Pulmonary Disease (COPD). A typical patient, who we’ll call Maria, might visit a doctor every six months for routine COPD checkups, but collecting data biannually may not provide the information needed to see important health trends and anticipate potential complications. Rather than relying on these infrequent visits, COPD patients could access the benefits of DHT via digital care products to manage the disease.

Firstly, this type of patient needs access to personal medical devices that can actively monitor health at home or on the go. The Withings ScanWatch is an example of a connected device that can monitor this patient’s oxygen saturation and daily walking distance multiple times a day rather than the typical protocol, which is to wait six months to measure indicators in hospital. The next step towards DHT solutions entails the bridge between patients’ data and medical providers. The backend integration of Withings’ open API allows Babylon, a telemedicine platform, to automatically and safely receive data that patients have authorized to be sent. Medical providers would then have on-demand access to the data and can adjust this patient’s medications accordingly while also monitoring the long-term effectiveness of treatment.

In addition to the medical device and telemedicine bridge between patient and provider, using a companion digital therapeutics (DTx) for COPD could help improve patient outcomes. The DTx is clinically-validated, works with medications, tracks triggers that reduce oxygen levels, and helps adjust key behaviors to optimize overall condition. Due to the insights provided via the DTx, COPD patients can avoid taking walks on days with high levels of air pollution, lower the use of rescue inhalers, understand how to best exercise, and experience reduced dyspnoea episodes.

The combination of device, telemedicine, and DTx is a suite of technologies composing DHT that can help patients and providers co-create care plans that help identify goals and well-defined actions to improve health and change key behaviors. While patients can still check in every 6 months with providers, data is being delivered more frequently which could reduce hospital visits and deliver better health indicators.

However, dumping large amounts of patient vitals every day is not the answer, which is why providers can enable a series of alerts that initiate a clinician review based on patient triggers revolving around personal conditions and health history. In this case, doctors only see the information that is needed, not daily dumps of data.

Who are the DHT minds behind this article?

Babylon Health

Babylon Health is a globally leading technology company with the ambitious mission to put an accessible and affordable health service in the hands of every person on Earth. We combine technology and medical expertise to bring doctors and people closer together, with digital health tools designed to empower people with knowledge about their health. Through a range of digital health services — such as an AI-backed app and video doctor appointments — we provide around-the-clock access to affordable, holistic healthcare services and information. We work with governments, health providers and insurers across the globe, and healthcare facilities from small local practices to large hospitals. With a $2Bn valuation, Babylon covers 20 million people across the globe, and has delivered more than 8m virtual consultations and AI interactions. We have teamed up with 170 impactful worldwide partners — including Mount Sinai Health Partners, the NHS, Telus Health, the Bill & Melinda Gates Foundation and the Government of Rwanda — to fulfil our vision of accessible and affordable healthcare, for all. For more information, visit https://www.babylonhealth.com

Withings

Withings produces medical grade devices for at-home monitoring so that patients can understand with precision their symptoms and trends in indicators. Withings’ mission is to continuously and effortlessly provide healthcare professionals with medical-grade data generated by patients from an ecosystem of connected devices. For more than a decade, Withings has built a range of award-winning products including activity trackers, connected scales, a wireless blood pressure monitor, a smart temporal thermometer, and an advanced sleep system. From remote patient monitoring to clinical research to chronic disease management, Withings has dedicated solutions that provide the richest array of accurate real-world data thanks to a complete ecosystem of connected devices, data connectivity options, and a remote patient monitoring platform. Visit our website here.

Digital Therapeutics Alliance

Founded in 2017, the Digital Therapeutics Alliance (DTA) is a non-profit trade association of industry leaders and stakeholders engaged in the evidence-driven advancement of digital therapeutics. DTA maintains an international industry focus and is headquartered in the United States. DTA exists to broaden the understanding, adoption, and integration of clinically evaluated digital therapeutics into healthcare through education, advocacy, and research. In Europe, digital therapeutics offer regulated, CE marked digital therapies to patients with a diagnosed condition or disease. Most DTx products in Europe require third-party authorization or a prescription from a qualified clinician. Digital therapeutics undergo clinical trials, collect real world outcomes, and are based on patient-centered core principles and product development best practices, including product design, usability, data security, and privacy standards.

Don’t miss out,  subscribe to get the latest content updates.  

Related Content

WP_Query Object ( [query] => Array ( [post_type] => post [post_status] => publish [orderby] => date [order] => DESC [ignore_sticky_posts] => 1 [post__not_in] => Array ( [0] => 361 ) [cat] => 18 [posts_per_page] => 3 ) [query_vars] => Array ( [post_type] => post [post_status] => publish [orderby] => date [order] => DESC [ignore_sticky_posts] => 1 [post__not_in] => Array ( [0] => 361 ) [cat] => 18 [posts_per_page] => 3 [error] => [m] => [p] => 0 [post_parent] => [subpost] => [subpost_id] => [attachment] => [attachment_id] => 0 [name] => [pagename] => [page_id] => 0 [second] => [minute] => [hour] => [day] => 0 [monthnum] => 0 [year] => 0 [w] => 0 [category_name] => articles [tag] => [tag_id] => [author] => [author_name] => [feed] => [tb] => [paged] => 0 [meta_key] => [meta_value] => [preview] => [s] => [sentence] => [title] => [fields] => [menu_order] => => [category__in] => Array ( ) [category__not_in] => Array ( ) [category__and] => Array ( ) [post__in] => Array ( ) [post_name__in] => Array ( ) [tag__in] => Array ( ) [tag__not_in] => Array ( ) [tag__and] => Array ( ) [tag_slug__in] => Array ( ) [tag_slug__and] => Array ( ) [post_parent__in] => Array ( ) [post_parent__not_in] => Array ( ) [author__in] => Array ( ) [author__not_in] => Array ( ) [search_columns] => Array ( ) [suppress_filters] => [cache_results] => 1 [update_post_term_cache] => 1 [update_menu_item_cache] => [lazy_load_term_meta] => 1 [update_post_meta_cache] => 1 [nopaging] => [comments_per_page] => 50 [no_found_rows] => ) [tax_query] => WP_Tax_Query Object ( [queries] => Array ( [0] => Array ( [taxonomy] => category [terms] => Array ( [0] => 18 ) [field] => term_id [operator] => IN [include_children] => 1 ) ) [relation] => AND [table_aliases:protected] => Array ( [0] => wp_term_relationships ) [queried_terms] => Array ( [category] => Array ( [terms] => Array ( [0] => 18 ) [field] => term_id ) ) [primary_table] => wp_posts [primary_id_column] => ID ) [meta_query] => WP_Meta_Query Object ( [queries] => Array ( ) [relation] => [meta_table] => [meta_id_column] => [primary_table] => [primary_id_column] => [table_aliases:protected] => Array ( ) [clauses:protected] => Array ( ) [has_or_relation:protected] => ) [date_query] => [request] => SELECT SQL_CALC_FOUND_ROWS wp_posts.ID FROM wp_posts LEFT JOIN wp_term_relationships ON (wp_posts.ID = wp_term_relationships.object_id) WHERE 1=1 AND wp_posts.ID NOT IN (361) AND ( wp_term_relationships.term_taxonomy_id IN (18) ) AND wp_posts.post_type = 'post' AND ((wp_posts.post_status = 'publish')) GROUP BY wp_posts.ID ORDER BY wp_posts.post_date DESC LIMIT 0, 3 [posts] => Array ( [0] => WP_Post Object ( [ID] => 1188 [post_author] => 8 [post_date] => 2024-04-16 08:12:38 [post_date_gmt] => 2024-04-16 08:12:38 [post_content] =>

Calls have been growing louder to more effectively address the related problems of diabetes-related foot ulcers (DFUs) and amputations, two of the most serious consequences of diabetes-related peripheral neuropathy (DPN). Health associations like the American Diabetes Association® (ADA), patient advocacy groups, patients, and providers all see the need to improve the detection of DPN, earlier intervention, and more effective treatments to combat an amputation problem that disproportionately impacts communities of color and lower economic status.

 

Unfortunately, there is not a large body of research related to the question of simple compliance with the ADA’s standard of an annual foot exam for people with diabetes. However, a study published in Clinical Nursing Research journal in 2017 indicated only 16% of patient charts reviewed in a specialty clinic met the ADA’s standard for an annual foot exam. Clinicians regularly report seeing patients who present with serious DFUs who have never had a proper foot examination.

 

With the goal of promoting patient education on diabetes-related foot health, earlier detection of neuropathy, and regular diabetes-related foot exams, Withings has partnered with the ADA’s Project Power to put smart scales in the homes of approximately 2,305 participants in 849 cities with particularly high-risk and vulnerable communities. Project Power’s goal is to reduce diabetes risk factors and improve diabetes health literacy, self-care behaviors, and glycemic management. The program is conducted with a combination of in-person and remote sessions that focus on topics such as nutrition, exercise, emotional health, heart health, glucose monitoring, and foot health.

 

Sherry Hill, program director for Project Power, commented, “We are excited to be working with Withings to bring the Project Power participant experience to the next level. By bringing smart scale technology into our participants’ homes, we hope to provide personalized solutions to achieve healthier living goals to reduce the risk for type 2 diabetes and help prevent or delay its complications.”

 

For Withings, Project Power is one of the many examples of how its sophisticated health technology is being used to better connect patients and their health coaches with appropriate care from a clinician. By flagging potential issues earlier and setting up regular monitoring, patient health outcomes can be improved. Through early interventions, lifestyle changes have a better chance of slowing complications.


Learn more about Project Power.

Interested in partnering with us?

Contact Us [post_title] => The ADA and Withings Join Forces to Reduce Diabetes Risk and Complications [post_excerpt] => Peer-reviewed studies have shown that only a fraction of people with diabetes comply with the American Diabetes Association (ADA) standard of annual foot exams. The ADA is now using Withings smart scales in its signature Project Power program to promote regular foot exams and better foot health for people at high-risk for diabetes [post_status] => publish [comment_status] => closed [ping_status] => closed [post_password] => [post_name] => ada-and-withings-diabetic-foot-health [to_ping] => [pinged] => [post_modified] => 2024-04-16 08:12:39 [post_modified_gmt] => 2024-04-16 08:12:39 [post_content_filtered] => [post_parent] => 0 [guid] => https://withingshealthsolutions.com/?p=1188 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [1] => WP_Post Object ( [ID] => 1183 [post_author] => 1 [post_date] => 2024-04-16 08:11:42 [post_date_gmt] => 2024-04-16 08:11:42 [post_content] =>

In an interview with Harvard Medical School’s Harvard Health, Dr. Khosro Farhad, a neuropathy expert at Harvard-affiliated Massachusetts General Hospital, noted that small-fiber neuropathy is generally underdiagnosed because routine neurological exams and tests cannot accurately discriminate between large-fiber and small-fiber neuropathy. 

 

In a literature review of diabetic peripheral neuropathy diagnostic and screening technologies in the Journal of Diabetes Science and Technology, Kelley Newlin Lew et al pointed out that the body of research backs up the assertion that distal symmetrical peripheral neuropathy  - including both small- and large-fiber neuropathy - is underdiagnosed in primary care (1).

 

The article points out: 

Small- and large-nerve fiber DSPN (distal symmetrical peripheral neuropathy) may present exclusively or together while each subtype may increase risk for foot ulceration due to reduced sensory function, and thereby heightened risk for lower extremity amputations. According to the ADA, the clinical history and physical examination often are sufficient for diagnosis of DSPN. Yet, up to 50% of individuals with DSPN may be asymptomatic.

 

Small-fiber DSPN typically precedes large-fiber neuropathy. Small-fiber DSPN impairs functional integrity of the small thinly myelinated Aδ and unmyelinated C fibers. These small, peripheral nerve fibers prominently convey pain to the central nervous system. In DSPN, they may stimulate profound pain. Small-fiber DSPN may also adversely affect local autonomic (eg, decreased sweating, dry skin, impaired vasomotion) and thermoreceptor (cold, warm sensations) functions.

 

Often, pain and other symptoms and signs first manifest in the feet and progress proximally to the lower extremities and, in some cases, to the hands with a stocking and glove pattern. However, some with small-fiber DSPN may not experience pain. A proportion of patients with small-fiber neuropathy may present with little evidence of the disease, which may delay DSPN diagnosis.

 

 

The primary care practitioner’s toolbox for diagnosing diabetic peripheral neuropathy has been very limited to date, with tools such as temperature and pin-prick sensation, 128-Hz tuning fork, and 10-g monofilament that are neither quantifiable nor reproducible and are prone to human error. Further, since the ADA Standards of Care only call for annual foot exams for people with a diagnosis of diabetes, a large number of patients with pre-diabetes accompanied by the onset of small fiber neuropathy, miss the chance for an early diagnosis (2,3).

 

Withings is focused intently on this deficit in detection technologies in primary care and other frontline environments. As Newlin Lew points out in the Journal of Diabetes Science and Technology article, the Sudoscan® Electrochemical Skin Conductance (ESC) technology being used in our Body Pro 2 device, and that has been used in clinical settings for nearly a decade, could play an important role in improving detection and monitoring:   

 

When considered with respect to past and more recent research, Sudoscan has substantial evidence revealing it may potentially identify early DSPN (although this is not its main use) and monitor DSPN progression over time. Sudoscan also has adequate reproducibility and repeatability. Sudoscan is approved by the FDA and may be reimbursed through proper billing. Sudoscan is thus a POCD [point of care device] worthy of clinical adoption to detect and monitor DSPN in clinical settings.

 

  1. Newlin Lew K, Arnold T, Cantelmo C, Jacque F, Posada-Quintero H, Luthra P, Chon KH. Diabetes Distal Peripheral Neuropathy: Subtypes and Diagnostic and Screening Technologies. Journal of Diabetes Science and Technology. 2022 Mar;16(2):295-320. doi: 10.1177/19322968211035375. Epub 2022 Jan 7. PMID: 34994241; PMCID: PMC8861801. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8861801/
  2. Williams SM, Eleftheriadou A, Alam U, Cuthbertson DJ, Wilding JPH. Cardiac Autonomic Neuropathy in Obesity, the Metabolic Syndrome and Prediabetes: A Narrative Review. Diabetes Ther. 2019 Dec;10(6):1995-2021. doi: 10.1007/s13300-019-00693-0. Epub 2019 Sep 24. Erratum in: Diabetes Ther. 2019 Oct 4;: PMID: 31552598; PMCID: PMC6848658. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6848658/
  3.  Burgess J, Frank B, Marshall A, Khalil RS, Ponirakis G, Petropoulos IN, Cuthbertson DJ, Malik RA, Alam U. Early Detection of Diabetic Peripheral Neuropathy: A Focus on Small Nerve Fibres. Diagnostics (Basel). 2021 Jan 24;11(2):165. doi: 10.3390/diagnostics11020165. PMID: 33498918; PMCID: PMC7911433. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7911433/

Interested in partnering with us?

Contact Us [post_title] => Small Fiber Neuropathy - The Under-Diagnosed Peripheral Neuropathy [post_excerpt] => In an interview with Harvard Medical School’s Harvard Health, Dr. Khosro Farhad, a neuropathy expert at Harvard-affiliated Massachusetts General Hospital, noted that small-fiber neuropathy is generally underdiagnosed because routine neurological exams and tests cannot accurately discriminate between large-fiber and small-fiber neuropathy. [post_status] => publish [comment_status] => closed [ping_status] => closed [post_password] => [post_name] => small-fiber-neuropathy-the-under-diagnosed-peripheral-neuropathy [to_ping] => [pinged] => [post_modified] => 2024-04-16 08:17:26 [post_modified_gmt] => 2024-04-16 08:17:26 [post_content_filtered] => [post_parent] => 0 [guid] => https://withingshealthsolutions.com/?p=1183 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [2] => WP_Post Object ( [ID] => 1184 [post_author] => 1 [post_date] => 2024-04-16 08:09:33 [post_date_gmt] => 2024-04-16 08:09:33 [post_content] =>

Electrochemical Skin Conductance (ESC) is a physiological parameter that measures the reactivity of sweat glands and small nerve fibers in the skin to electrical stimuli. Elevated blood sugar levels can harm blood vessels, inhibiting their ability to supply oxygen and essential nutrients to these small nerves, leading to their deterioration. This effect is amplified because the nerve fibers that supply sweat glands are long, thin and unmyelinated, they are easily damaged. When the sweat glands and small nerve fibers lose functionality, it is a sign of starting peripheral neuropathy.


Diabetic peripheral neuropathy (DPN) affects the majority of patients with diabetes, but it is difficult to diagnose in its early stages because up to half of those affected are asymptomatic (no pain and good feet sensation). These undetected signs and lack of care can lead to Diabetic Foot Ulcer (DFU) and in the worst case to amputation(1). Though late stage DPN cannot be reversed, early detection can help to slow the progression through exercise, HbA1c control, addressing certain vitamin deficiencies, and other lifestyle changes. According to the American Academy of Family Physicians, early detection and treatment of DPN and resulting foot ulcers has the potential to prevent up to 85% of amputations (2,3).


Many studies have demonstrated the link between sudomotor function and the risk for DPN paving the way for the use of the Sudoscan within DPN characterization (4,5,6,7). ESC has now a 15+ year track record of R&D and a body of peer-reviewed research in more than 200 scientific publications. Because of this vast array of clinical evidence,Withings decided to integrate the ESC measurement into its scales leading to the Body Pro 2 device. To measure ESC, patients simply step on the Body Pro 2 scale (8). Electrodes in the scale emit a small painless current to the feet, and the device measures the resulting chloride conductance in the sweat glands. Within 60 seconds, patients and their providers receive their ESC score (and other biomarkers). Low conductance, and thus a low ESC score, indicates sudomotor dysfunction with a known threshold to stratify patients. 


With a persistent DFU and amputation problem impacting millions of people with diabetes, it is clear that current clinical methods and patient compliance are insufficient to markedly reduce incidences. Even for patients who have their annual foot exam, the conventional monofilament test results in a misdiagnosis nearly half the time (9). Skin biopsies are conclusive, but invasive, painful, and especially problematic for patients who have a high risk of infection and whose wounds heal slowly. By contrast, our ESC technology provides a rapid, operator-independent, and reproducible method that can replace monofilament and balance the drawbacks of invasive biopsy.


While preventing DFUs is a complex problem requiring multi-faceted solutions, we are already working with leading providers in the U.S., Europe and Asia to enable easier and more reliable diagnosis and monitoring of DPN using the ESC technology in Body Pro 2. Importantly, we believe that the quantifiable, reproducible, rapid and non-invasive methodology has far more potential for scaling in proportion to the size of the DFU problem, and can better serve the requirements of a highly diverse patient population. 

  1.  Armstrong, D. G., Tan, T.-W., Boulton, A. J. M. & Bus, S. A. Diabetic Foot Ulcers: A Review. JAMA 330, 62–75 (2023).  https://jamanetwork.com/journals/jama/article-abstract/2806655
  2.  Hunt, D. Diabetes: Foot Ulcers and Amputations. Am. Fam. Physician 80, 789–790 (2009).  https://www.aafp.org/pubs/afp/issues/2009/1015/p789.html
  3.  Esquenazi, A., Kwasniewski, M. Lower Limb Amputations: Epidemiology and Assessment. PM&R KnowledgeNow (2017). https://now.aapmr.org/lower-limb-amputations-epidemiology-and-assessment/
  4.  Galiero, R. et al. Peripheral Neuropathy in Diabetes Mellitus: Pathogenetic Mechanisms and Diagnostic Options. Int. J. Mol. Sci. 24, 3554 (2023). https://doi.org/10.3390/ijms24043554
  5.  Casellini, C. M., Parson, H. K., Richardson, M. S., Nevoret, M. L. & Vinik, A. I. Sudoscan, a noninvasive tool for detecting diabetic small fiber neuropathy and autonomic dysfunction. Diabetes Technol. Ther. 15, 948–953 (2013). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3817891/
  6.  Vinik, A. I., Nevoret, M.-L. & Casellini, C. The New Age of Sudomotor Function Testing: A Sensitive and Specific Biomarker for Diagnosis, Estimation of Severity, Monitoring Progression, and Regression in Response to Intervention. Front. Endocrinol. 6, 94 (2015). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4463960/
  7. Novak, P. Electrochemical skin conductance: a systematic review. Clin. Auton. Res. Off. J. Clin. Auton. Res. Soc. 29, 17–29 (2019). https://doi.org/10.1007/s10286-017-0467-x
  8.  Riveline, J.-P. et al. Validation of the Body Scan®, a new device to detect small fiber neuropathy by assessment of the sudomotor function: agreement with the Sudoscan®. Front. Neurol. 14, (2023). https://doi.org/10.3389/fneur.2023.1256984
  9.  Dube, S. et al. Effectiveness of Semmes Weinstein 10 gm monofilament in diabetic peripheral neuropathy taking nerve conduction and autonomic function study as reference tests. J. Fam. Med. Prim. Care 11, 6204–6208 (2022). https://doi.org/10.4103/jfmpc.jfmpc_195_22

Interested in partnering with us?

Contact Us [post_title] => Understanding our ESC Technology for Detecting and Monitoring DPN [post_excerpt] => Electrochemical Skin Conductance (ESC) is a physiological parameter that measures the reactivity of sweat glands and small nerve fibers in the skin to electrical stimuli. Elevated blood sugar levels can harm blood vessels, inhibiting their ability to supply oxygen and essential nutrients to these small nerves, leading to their deterioration. This effect is amplified because the nerve fibers that supply sweat glands are long, thin and unmyelinated, they are easily damaged. When the sweat glands and small nerve fibers lose functionality, it is a sign of starting peripheral neuropathy. [post_status] => publish [comment_status] => closed [ping_status] => closed [post_password] => [post_name] => understanding-our-esc-technology-for-detecting-and-monitoring-dpn [to_ping] => [pinged] => [post_modified] => 2024-04-16 08:15:45 [post_modified_gmt] => 2024-04-16 08:15:45 [post_content_filtered] => [post_parent] => 0 [guid] => https://withingshealthsolutions.com/?p=1184 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) ) [post_count] => 3 [current_post] => -1 [before_loop] => 1 [in_the_loop] => [post] => WP_Post Object ( [ID] => 1188 [post_author] => 8 [post_date] => 2024-04-16 08:12:38 [post_date_gmt] => 2024-04-16 08:12:38 [post_content] =>

Calls have been growing louder to more effectively address the related problems of diabetes-related foot ulcers (DFUs) and amputations, two of the most serious consequences of diabetes-related peripheral neuropathy (DPN). Health associations like the American Diabetes Association® (ADA), patient advocacy groups, patients, and providers all see the need to improve the detection of DPN, earlier intervention, and more effective treatments to combat an amputation problem that disproportionately impacts communities of color and lower economic status.

 

Unfortunately, there is not a large body of research related to the question of simple compliance with the ADA’s standard of an annual foot exam for people with diabetes. However, a study published in Clinical Nursing Research journal in 2017 indicated only 16% of patient charts reviewed in a specialty clinic met the ADA’s standard for an annual foot exam. Clinicians regularly report seeing patients who present with serious DFUs who have never had a proper foot examination.

 

With the goal of promoting patient education on diabetes-related foot health, earlier detection of neuropathy, and regular diabetes-related foot exams, Withings has partnered with the ADA’s Project Power to put smart scales in the homes of approximately 2,305 participants in 849 cities with particularly high-risk and vulnerable communities. Project Power’s goal is to reduce diabetes risk factors and improve diabetes health literacy, self-care behaviors, and glycemic management. The program is conducted with a combination of in-person and remote sessions that focus on topics such as nutrition, exercise, emotional health, heart health, glucose monitoring, and foot health.

 

Sherry Hill, program director for Project Power, commented, “We are excited to be working with Withings to bring the Project Power participant experience to the next level. By bringing smart scale technology into our participants’ homes, we hope to provide personalized solutions to achieve healthier living goals to reduce the risk for type 2 diabetes and help prevent or delay its complications.”

 

For Withings, Project Power is one of the many examples of how its sophisticated health technology is being used to better connect patients and their health coaches with appropriate care from a clinician. By flagging potential issues earlier and setting up regular monitoring, patient health outcomes can be improved. Through early interventions, lifestyle changes have a better chance of slowing complications.


Learn more about Project Power.

Interested in partnering with us?

Contact Us [post_title] => The ADA and Withings Join Forces to Reduce Diabetes Risk and Complications [post_excerpt] => Peer-reviewed studies have shown that only a fraction of people with diabetes comply with the American Diabetes Association (ADA) standard of annual foot exams. The ADA is now using Withings smart scales in its signature Project Power program to promote regular foot exams and better foot health for people at high-risk for diabetes [post_status] => publish [comment_status] => closed [ping_status] => closed [post_password] => [post_name] => ada-and-withings-diabetic-foot-health [to_ping] => [pinged] => [post_modified] => 2024-04-16 08:12:39 [post_modified_gmt] => 2024-04-16 08:12:39 [post_content_filtered] => [post_parent] => 0 [guid] => https://withingshealthsolutions.com/?p=1188 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [comment_count] => 0 [current_comment] => -1 [found_posts] => 22 [max_num_pages] => 8 [max_num_comment_pages] => 0 [is_single] => [is_preview] => [is_page] => [is_archive] => 1 [is_date] => [is_year] => [is_month] => [is_day] => [is_time] => [is_author] => [is_category] => 1 [is_tag] => [is_tax] => [is_search] => [is_feed] => [is_comment_feed] => [is_trackback] => [is_home] => [is_privacy_policy] => [is_404] => [is_embed] => [is_paged] => [is_admin] => [is_attachment] => [is_singular] => [is_robots] => [is_favicon] => [is_posts_page] => [is_post_type_archive] => [query_vars_hash:WP_Query:private] => 614d63474ceb6a92992fe407c9b61a95 [query_vars_changed:WP_Query:private] => [thumbnails_cached] => [allow_query_attachment_by_filename:protected] => [stopwords:WP_Query:private] => [compat_fields:WP_Query:private] => Array ( [0] => query_vars_hash [1] => query_vars_changed ) [compat_methods:WP_Query:private] => Array ( [0] => init_query_flags [1] => parse_tax_query ) )
Article

The ADA and Withings Join Forces to Reduce Diabetes Risk and Complications

Read More
Article

Small Fiber Neuropathy – The Under-Diagnosed Peripheral Neuropathy

Read More
Article

Understanding our ESC Technology for Detecting and Monitoring DPN

Read More