Article

Addressing the limits of connected health — and breaking them

8 min read

How did the connected health movement begin and what are the roadblocks to access and adoption? We talked to a Health Economist about the history and future of the technology that is revolutionizing healthcare.

Inventing, producing, and marketing connected health devices requires attention to consumer trends, regulatory developments, international markets, and a variety of other fields. However, devoting resources and centering product philosophy to uplifting people who might otherwise be left out of the connected health world is paramount as there is no complete ecosystem without their participation. But when we mention people being left out of the connected health ecosystem, who are we referencing? Some might typically point to older members of the population, but this would not accurately describe everyone who stands to lose by not being part of the connected health revolution.

Health economist and author Jane Sarasohn-Kahn has spent decades researching the healthcare industry and its associated technology and limits to wider adoption. Sarasohn-Kahn touches upon various events that have led to connected health and the limits that have prevented more participation in the ecosystem, and Withings Co-founder and current President Éric Carreel responds with how he is working to address roadblocks and inviting more stakeholders into the connected health fold.

The curious case of recessions driving innovation

Addressing the limits on connected health requires a bird’s-eye view of the landscape, and Sarasohn-Kahn does so by saying COVID19 has accelerated “do-it-yourself” (DIY) care, partly evidenced by spending on out-of-pocket costs increasing by a third during the pandemic. However, according to Sarasohn-Kahn, this DIY health trend didn’t start in 2020, but far earlier. She cites the Great Recession of 2007 as a turning point towards wider adoption of connected health.

“In recessions, people are broke. We end up depending on ourselves to make life, rather than going to restaurants, doctors, etc. So, how do we avoid spending money outside of the house? We take it inside the house,” says Sarasohn-Kahn.

And a lack of money is key in the story of the Great Recession. Inflation may have contracted and recovered within 18 months, but The Great Recession’s financial effects extended well beyond as one in five U.S. workers were laid off and never received a full-time job again. In addition, from 2006 to 2016, middle income earners’ wages grew at a slower rate than low and high earners. Digital gigwork began to fill in the employment holes with Airbnb and TaskRabbit in 2008 and Uber in 2010, and all of these events together made for either no healthcare coverage or increasingly expensive plans and doctor visits.

The decrease in the number of jobs that provided healthcare meant more self-reliance with regard to personal health. Again, Sarasohn-Kahn explains the wider psychological effect on this wider national decrease in income-disparities for American workers. “We go through these recessions, feel broke or limited, and we make up for it with more self-care, with the home emerging as a health hub.” This idea of health at home was especially pronounced three years after the Great Recession as the Health Care and Education Reconciliation Act (the ACA) was not signed until the end of March of 2010 before states were mandated to expand American citizens’ access to healthcare.

The rise of the quantified self

However, the DIY home-health phenomenon wasn’t just due to financial insecurity and job loss. The increase in connected health intersected with Apple’s iPhone release the same year of the recession’s beginning, 2007, and this convergence led to wider adoption of connected health beyond the original enthusiasts known as the Quantified-Self (QS) community who would previously go to Radio Shack to buy components and “make” their own contraptions to capture health metrics. 2008 was also the year Withings was founded by engineers, including Carreel, who were looking to revolutionize the world’s relationship with health. Then in 2009, Withings engineers developed and brought to market the world’s first connected scale.

In terms of access, America was headed towards the beginnings of connected health, but the journey towards wider adoption had not been one of linear progress but a mix of deep and painful economic realities and technological advancements.

Connected health roadblocks: high-speed internet, health literacy, and data privacy and control

This most recent economic downturn is not only different with respect to its origin in the pandemic, but also the force by which it has pushed people towards the home as a health hub. Fear of visiting the doctor or actual pauses in annual physicals and other routine care have been a feature of the pandemic as well as the explosion in telemedicine. Therefore, data collection has been pushed even further to digital; but have the limits to greater access been lowered?

Ideally connected health can enable better outcomes by decreasing barriers to meaningful data for both patients and providers, but what are the limits on connected health from expanding into the future or even being accessible to people now? Sarasohn-Kahn states that one of the biggest blocks is access to broadband or high-speed internet, something the Federal Communications Commission says is not being rolled out at the rate needed for America. With almost 15% of American households without an internet subscription (or double that rate for low-income earners), access to connected health is not tenable in the absence of reliable broadband.

Sarasohn-Kahn continues by saying that health “literacy” is another major challenge, and this can be divided into four categories:

  • General reading literacy
  • Digital literacy
  • Health plan literacy
  • Medical literacy, as in understanding how to use a prescription drug regimen, etc

Regarding general literacy, the U.S. Department of Education reported in 2019 that 43 million adults (16–65) in America lack basic literacy, or more specifically, are unable to complete simple forms, consume relatively short texts, or find the meaning of sentences. Two-thirds of those adults were born in the U.S..

General illiteracy leads to additional illiteracy in the other three categories without explicit and external help from community and healthcare sources. The added weight of poverty being closely associated with illiteracy is another strike in terms of families and individuals being able to allocate personal funds for connected devices, and this can leave a large segment of the population out of the connected health ecosystem even in the presence of Wi-Fi access.

This realization led Sarasohn-Kahn to assert that access to broadband is a social determinant of health; without it, and especially learned in the COVID-19 public health crisis and #StayHome era, people could not work from home, attend school or college at a distance, seek jobs, or communicate with loved ones living elsewhere.

Data privacy and control is another limit to connected health that Sarasohn-Kahn lists. Though many of us may be vacillating back and forth between the acceptance that most of our data has been compromised at one point and the idea that we still retain some morsel of anonymity regarding our personal health information, scientists have polled segments of the population across the world and find that a majority of people would be fine sharing their health data for scientific research and even disclosing analytics for financial reward.

Forward-thinking health companies are responding to these limits on connected health by developing devices that operate with cellular service. Take Withings Health Solutions, the new B2B arm of Withings to provide digital health programs, providers, and patients the tools they need to address the limits of connected health as outlined above:

  1. Broadband access — Health Solutions provides digital health programs with smart devices including scales and blood pressure monitors that require no Wi-Fi or internet connection. Instead, devices connect through cell service thereby making a more inclusive environment for people living in rural areas, low-income households, and others who might lack access to broadband services. In addition, devices can be mailed directly to patients thereby overcoming potential issues in transportation.
  2. Literacy — The Withings devices from Health Solutions require minimal installation usually entailing one step to complete setup. However, healthcare professionals can opt to be part of the program so patients receive external help that any literacy might otherwise be impeded by. Technology is scary for a lot of people, and making it as easy to use as possible reduces barriers in literacy.
  3. Data privacy and control —Devices sold in the Withings Health Solutions range can be set up in a HIPAA compliant environment. In addition, Withings is a European company that follows GDPR rules which ensures users’ data is not abused. Finally, because patient data is oriented towards improving care, the sharing of analytics between patient and doctor follows positive inclinations based on polling conducted across segments of the population.
  4. Cost — Health Solutions promotes preventative care, which by itself is a cost-saving measure, and investments in daily measurements that Health Solutions devices provide ultimately save money by reducing instances of more serious events.

When asked about the work Withings has done to create a more robust connected health ecosystem, Carreel sums up the above by saying, “Our mission has always been to provide empowering tools for patient-centered care. To achieve better long-term health outcomes, Health Solutions is laser-focused on helping save time and money by bridging the gap with accurate data and a system that improves patient management. Reducing barriers, increasing literacy, and respecting others’ data are all key to delivering on the promise of connected health.”

Jane Sarasohn-Kahn is a health economist, advisor, and consultant that has spent three decades advising healthcare stakeholders including public sector entities, NGOs, and life science and tech companies. Jane is also the author of Health Citizenship: How a virus opened up hearts and minds, a book that explores the four pillars of ‘health citizenship’: access to healthcare, data rights, institutional trust, and love for fellow health citizens. You can keep up with Jane and her work at HealthPopuli or follow her on LinkedIn. Please note that Sarasohn-Kahn’s participation in this conversation is not an endorsement of Withings or its associated programs and/or technology.

Health Solutions is the new B2B arm of Withings which provides HIPAA-certified and GDPR-compliant devices for programs and providers to view patient analytics and implement informed care. Data points including weight, heart rate, ECG readings, blood pressure, body temperature, and more can be collected through Withings medical-grade device ecosystem.* Drop shipment of connected devices and dedicated support channels for care managers are available, and cellular capability combined with long battery life ensure that patients remain engaged in programs.

*Certain measurements are country-specific regarding availability.

Learn more about data security at Withings.

Don’t miss out,  subscribe to get the latest content updates.  

Related Content

WP_Query Object ( [query] => Array ( [post_type] => post [post_status] => publish [orderby] => date [order] => DESC [ignore_sticky_posts] => 1 [post__not_in] => Array ( [0] => 363 ) [cat] => 18 [posts_per_page] => 3 ) [query_vars] => Array ( [post_type] => post [post_status] => publish [orderby] => date [order] => DESC [ignore_sticky_posts] => 1 [post__not_in] => Array ( [0] => 363 ) [cat] => 18 [posts_per_page] => 3 [error] => [m] => [p] => 0 [post_parent] => [subpost] => [subpost_id] => [attachment] => [attachment_id] => 0 [name] => [pagename] => [page_id] => 0 [second] => [minute] => [hour] => [day] => 0 [monthnum] => 0 [year] => 0 [w] => 0 [category_name] => articles [tag] => [tag_id] => [author] => [author_name] => [feed] => [tb] => [paged] => 0 [meta_key] => [meta_value] => [preview] => [s] => [sentence] => [title] => [fields] => all [menu_order] => => [category__in] => Array ( ) [category__not_in] => Array ( ) [category__and] => Array ( ) [post__in] => Array ( ) [post_name__in] => Array ( ) [tag__in] => Array ( ) [tag__not_in] => Array ( ) [tag__and] => Array ( ) [tag_slug__in] => Array ( ) [tag_slug__and] => Array ( ) [post_parent__in] => Array ( ) [post_parent__not_in] => Array ( ) [author__in] => Array ( ) [author__not_in] => Array ( ) [search_columns] => Array ( ) [suppress_filters] => [cache_results] => 1 [update_post_term_cache] => 1 [update_menu_item_cache] => [lazy_load_term_meta] => 1 [update_post_meta_cache] => 1 [nopaging] => [comments_per_page] => 50 [no_found_rows] => ) [tax_query] => WP_Tax_Query Object ( [queries] => Array ( [0] => Array ( [taxonomy] => category [terms] => Array ( [0] => 18 ) [field] => term_id [operator] => IN [include_children] => 1 ) ) [relation] => AND [table_aliases:protected] => Array ( [0] => wp_term_relationships ) [queried_terms] => Array ( [category] => Array ( [terms] => Array ( [0] => 18 ) [field] => term_id ) ) [primary_table] => wp_posts [primary_id_column] => ID ) [meta_query] => WP_Meta_Query Object ( [queries] => Array ( ) [relation] => [meta_table] => [meta_id_column] => [primary_table] => [primary_id_column] => [table_aliases:protected] => Array ( ) [clauses:protected] => Array ( ) [has_or_relation:protected] => ) [date_query] => [request] => SELECT SQL_CALC_FOUND_ROWS wp_posts.ID FROM wp_posts LEFT JOIN wp_term_relationships ON (wp_posts.ID = wp_term_relationships.object_id) WHERE 1=1 AND wp_posts.ID NOT IN (363) AND ( wp_term_relationships.term_taxonomy_id IN (18) ) AND wp_posts.post_type = 'post' AND ((wp_posts.post_status = 'publish')) GROUP BY wp_posts.ID ORDER BY wp_posts.post_date DESC LIMIT 0, 3 [posts] => Array ( [0] => WP_Post Object ( [ID] => 2100 [post_author] => 11 [post_date] => 2026-01-06 15:23:33 [post_date_gmt] => 2026-01-06 15:23:33 [post_content] =>

Introduction

Wearable ECG technology is increasingly used to support ambulatory cardiac rhythm monitoring, but questions remain about how these tools fit into patients’ daily lives.

 

A recent qualitative study conducted in the Netherlands explored this issue by comparing patient experiences using a smartwatch with single-lead ECG (1L-ECG) capability and a traditional Holter monitor over the course of one week.

 

The findings offer useful insights into the practical benefits and limitations of smartwatch-based ECG monitoring and what matters most to patients when rhythm monitoring moves beyond the clinic.

Study Overview

The study included 18 adults referred for ambulatory rhythm monitoring at a diagnostic center in the Netherlands, specifically through referrals from primary care to the cardiology outpatient clinic of the Dijklander Hospital in Hoorn. Participants were aged 32–85, with a median age of 66.

 

Each participant wore both:

  • A smartwatch with 1L-ECG capability (Withings ScanWatch), and
  • A conventional chest-worn Holter monitor

for seven days. Afterward, researchers conducted semi-structured interviews to understand their experiences with usability, comfort, confidence, and perceived clinical value.

 

Rather than focusing on diagnostic accuracy, the study centred on how patients experienced the monitoring process itself, an increasingly important consideration as wearable technologies become more common in routine care.

What Patients Reported

 

Comfort and Ease of Use

Participants consistently described the smartwatch as easier to wear and less intrusive than the Holter monitor. Wearing the watch felt familiar and fit naturally into daily routines, including sleep and regular activities. In contrast, the Holter monitor’s electrodes and wiring were more noticeable and, for some, uncomfortable over time.

 

Several participants noted skin irritation or inconvenience associated with adhesive electrodes, whereas the smartwatch was generally described as something they could wear without significant disruption to daily life.

 

“It’s a bit heavier than my own smartwatch. That takes a minute to get used to, but after that you don’t even notice it anymore. It’s waterproof, so you barely notice you’re wearing it — not even at night, since I always sleep with a watch on. I don’t feel the difference anymore. Other than that, it does what it’s supposed to do: tell the time. Which is pretty handy, too.”
P16, male patient, 48 years

 

Capturing Symptoms in Real Life

One of the key differences between the two approaches is how data are captured. The Holter monitor records continuously, while the smartwatch requires users to actively initiate an ECG recording.

 

Participants appreciated having control over recordings but also expressed uncertainty about when to trigger them, particularly when symptoms were brief, unexpected, or occurred during sleep or activities like driving. This highlights a trade-off between passive continuous monitoring and more user-driven approaches.

 

Automated ECG Results: Reassurance and Uncertainty

Some participants found algorithm-based ECG feedback reassuring, especially when results were reported as normal. Others described moments of uncertainty or anxiety when the smartwatch flagged potential abnormalities without immediate clinical context.

 

This finding underscores the importance of clear patient education and pathways for clinical follow-up when wearable ECG data are shared directly with users.

 

Integration With Clinical Care

Across interviews, participants emphasized that wearable ECG data felt most valuable when it could be reviewed by a healthcare professional. Many expressed a desire for smoother integration between smartwatch ECG recordings and clinical systems, as well as clearer guidance on how and when clinicians would review their data.

 

Patients generally viewed the smartwatch as a helpful complement to traditional monitoring, particularly when combined with clinician oversight, rather than a complete replacement.

Implications for Wearable ECG Monitoring

 

Overall, the study suggests that smartwatch-based 1L-ECG monitoring is acceptable to patients and may reduce some of the burden associated with traditional Holter monitoring, particularly in terms of comfort and day-to-day wearability.

 

At the same time, the findings point to areas where wearable ECG programs can improve:

  • Providing clearer guidance on when and how to record symptoms
  • Reducing uncertainty around automated ECG interpretations
  • Ensuring timely clinician review and communication

As devices like the Withings ScanWatch continue to be used in real-world clinical settings, patient experience will remain a critical factor alongside clinical validation.

Looking Forward

This study adds to a growing body of evidence showing that wearable ECG devices can support ambulatory rhythm monitoring in ways that align more closely with everyday life. Designing these tools and the care pathways around them with patient experience in mind will be key to realizing their full potential in clinical practice.

 

For more research-driven insights on connected health and remote monitoring, explore the latest updates on the Withings blog.

Interested in partnering with us?

Contact Us [post_title] => Patient Experiences With Smartwatch ECG Monitoring Compared to Traditional Holter Devices [post_excerpt] => A recent qualitative study conducted in the Netherlands compares patient experiences using a smartwatch with single-lead ECG (1L-ECG) capability and a traditional Holter monitor over the course of one week. [post_status] => publish [comment_status] => closed [ping_status] => closed [post_password] => [post_name] => patient-experiences-with-smartwatch-ecg-monitoring-compared-to-traditional-holter-devices [to_ping] => [pinged] => [post_modified] => 2026-01-06 15:51:03 [post_modified_gmt] => 2026-01-06 15:51:03 [post_content_filtered] => [post_parent] => 0 [guid] => https://withingshealthsolutions.com/?p=2100 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [1] => WP_Post Object ( [ID] => 2088 [post_author] => 11 [post_date] => 2025-12-15 15:48:18 [post_date_gmt] => 2025-12-15 15:48:18 [post_content] =>

The World Health Organization recently released its first global guideline on the use of GLP-1–based therapies for obesity, a milestone that signals a major shift in how health systems worldwide should approach long-term obesity care.

 

For obesity programs, digital-health organizations, and chronic-care providers, the message is clear: GLP-1s can be valuable tools, but only when embedded within a structured framework of behavioral support, lifestyle intervention, and ongoing monitoring.

Here’s a guide to what programs need to understand and how to prepare.

 

1. WHO Defines Obesity as a Chronic, Relapsing Disease, Not a Short-Term Problem or Fix

The guideline reinforces a position many clinicians already share: obesity requires ongoing management similar to other chronic diseases. This means obesity programs must prioritize continuity, long-term engagement, and structured monitoring, not episodic care. Many times patients see weight loss as a goal that they reach and that concludes their obesity care journey. The WHO emphasizes the ongoing nature of obesity as a disease, and obesity care as a necessity.

 

2. GLP-1s Are Recommended Conditionally and Only as Part of Comprehensive Care

WHO does not recommend medication alone. The guideline emphasizes:
GLP-1 therapies should be considered as one component of a broader care plan.

Treatment decisions should reflect patient context, preferences, and access. Programs must integrate behavioral interventions and lifestyle support alongside medication. For organizations delivering obesity care, this signals a need to strengthen or formalize their behavioral-support models, including: coaching, education, medical nutrition therapy (MNT), activity support, and digital engagement.

 

3. Behavioral Support Is Essential-Not Optional

The guideline places intensive behavioral therapy (IBT) at the center of obesity care. Programs should ensure they can offer:

  • Structured lifestyle guidance
  • Goal setting and personalized plans
  • Coaching or counseling pathways
  • Tools for sustained behavior change
  • Ongoing check-ins and accountability
  • Medical nutrition therapy (MNT) when needed

This isn’t merely additive, it is foundational to responsible GLP-1 prescribing and to long-term patient outcomes.

 

4. Monitoring Frameworks Must Become Core Infrastructure

One of the most operationally important implications for obesity programs is WHO’s emphasis on continuous monitoring and follow-up. Because obesity is chronic and GLP-1 outcomes evolve over time, programs need systems that can:

  • Track weight, body composition, and metabolic markers
  • Detect early signs of weight regain or treatment non-response
  • Support long-term engagement after dose changes or discontinuation
  • Ensure care teams can intervene proactively and remain the decision makers

This is where digital health infrastructure becomes essential. Connected devices, remote monitoring, and automated data flows make it possible to support thousands of patients consistently without adding extensive labor burden to clinical teams.

 

5. What Obesity Programs Should Do Next

To align with WHO’s guidance and strengthen patient outcomes, programs can begin by:

  • Evaluating their behavioral-support offering - ensuring it is structured, consistent, and accessible.
  • Implementing device-based monitoring- enabling ongoing, objective tracking of patient progress without the barriers of in-office care.
  • Ensuring continuity models beyond initial weight loss - including maintenance and relapse-prevention.
  • Building customizable data workflows that let care teams intervene early, efficiently, and at scale, while keeping the decision-making in the hands of the clinician.
  • Partnering with technology providers already equipped to deliver these components reliably.

The Bottom Line for Obesity Programs

The new WHO guideline is not simply a statement on medications. It is a blueprint for comprehensive, long-term obesity care. Programs that combine medication, behavioral support, and robust monitoring will be best positioned to deliver durable outcomes, meet patient expectations, reduce clinical burden, and scale responsibly.


Withings Health Solutions stands ready to support that evolution with the technology, partnerships, and evidence-aligned frameworks that make multimodal obesity care possible.

Interested in partnering with us?

Contact Us [post_title] => What Obesity Care Programs Need to Know About WHO’s New GLP-1 Guidelines [post_excerpt] => Learn what obesity care programs need to know about the new World Health Organization GLP-1 guidelines for obesity care. [post_status] => publish [comment_status] => closed [ping_status] => closed [post_password] => [post_name] => what-obesity-care-programs-need-to-know-about-whos-new-obesity-treatment-guidelines [to_ping] => [pinged] => [post_modified] => 2026-01-06 14:26:20 [post_modified_gmt] => 2026-01-06 14:26:20 [post_content_filtered] => [post_parent] => 0 [guid] => https://withingshealthsolutions.com/?p=2088 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [2] => WP_Post Object ( [ID] => 2083 [post_author] => 11 [post_date] => 2025-12-02 20:22:02 [post_date_gmt] => 2025-12-02 20:22:02 [post_content] =>

Chronic Kidney Disease stage 5 on dialysis (CKD5D) presents one of the most complex and high-risk scenarios in modern medicine. Among the many challenges faced by these patients, cardiovascular disease (CVD) stands out as the leading cause of mortality—a stark reminder of the systemic stress that accompanies kidney failure and dialysis.

 

But what if technology could help bridge the gap between dialysis sessions, offering clinicians a window into the patient's health in real-time? An article in Frontiers in Nephrology explores exactly that, highlighting the transformative potential of digital health technologies to monitor and manage CKD5D patients beyond the clinic.

The Hidden Risks Between Dialysis Sessions

For CKD5D patients, the risks of CVD are amplified by both traditional and disease-specific factors:

  • Traditional risks like hypertension, diabetes, and obesity.
  • CKD-specific risks such as inflammation, fluid overload, protein-energy wasting and vascular calcification.
  • The dialysis process itself, which induces rapid fluid shifts, blood pressure fluctuations, and metabolic imbalances.

Current clinical care models often focus on in-center dialysis data, leaving a crucial blind spot during the interdialytic period—a time when many adverse events begin to develop unnoticed.

A New Monitoring Paradigm: The Withings Toolkit

The article introduces a compelling case for home-based, connected health technologies—specifically, the Withings toolkit. This suite of medical-grade, consumer-friendly devices allows CKD patients to monitor key health indicators in the comfort of their homes:

  • Weight, body composition and ECG monitoring with the BodyScan smart scale.
  • Blood pressure, heart rate and survey responses for added context via BPM Pro 2.
  • Sleep quality and breathing event metrics using the Sleep Rx.

All data is seamlessly uploaded to the Withings Remote Patient Monitoring platform, providing healthcare providers and researchers with real-time, longitudinal insights into a patient’s well-being.

Why This Matters: Real-World Clinical Benefits

 

1. Early Detection of Complications
Weight gain could signal fluid retention, but muscle loss could indicate protein-energy wasting. A sudden spike in blood pressure or irregular heartbeat might indicate arrhythmias or volume overload. Poor sleep patterns could reflect apnea or restless leg syndrome—conditions with known ties to CKD.

 

2. Personalized, Data-Driven Care
These devices enable a dynamic view of health trends, allowing clinicians to tailor treatments proactively rather than reactively. Medication adjustments, fluid restrictions, or further diagnostics can be made with greater confidence.

 

3. Patient Empowerment

When patients can see and understand their own data, they become more engaged in their care. This promotes better self-management, increased treatment adherence, and a stronger sense of control over their condition.

 

4. Systemic Healthcare Advantages
Remote monitoring can reduce emergency visits and hospitalizations, easing the burden on overtaxed healthcare systems and offering a cost-effective alternative to frequent in-person evaluations.

The Future: Digital Tools as Standard of Care?

While still in its early stages, this integration of digital health into CKD care reflects a broader movement toward remote, preventative, and personalized medicine. The Withings case study serves as a promising example of how everyday technology can be adapted to serve complex clinical needs.

 

However, as the authors note, more clinical trials are needed to validate these tools in nephrology settings, establish protocols for data use, and ensure equitable access across diverse patient populations.

Final Thoughts

As we face growing rates of kidney disease and limited nephrology resources, connected health technologies offer a lifeline—not just to patients, but to an entire care infrastructure in need of modernization.


The Withings toolkit is more than a gadget suite; it's a glimpse into the future of chronic disease management, where data flows continuously, care is adaptive, and patients are active participants in their own health journey.

Reference:
Article: Frontiers in Nephrology, 2023 - DOI: 10.3389/fneph.2023.1148565

Interested in partnering with us?

Contact Us [post_title] => Revolutionizing Chronic Kidney Disease Management with Digital Health Tools: The Withings Case Study [post_excerpt] => Researchers from Imperial College London explored how continuous, contactless sleep monitoring using the Withings Sleep Analyzer can be used to detect acute conditions, focusing particularly on urinary tract infections (UTIs) before patients even recognize symptoms. [post_status] => publish [comment_status] => closed [ping_status] => closed [post_password] => [post_name] => revolutionizing-chronic-kidney-disease-management-with-digital-health-tools-the-withings-case-study [to_ping] => [pinged] => [post_modified] => 2025-12-02 20:22:24 [post_modified_gmt] => 2025-12-02 20:22:24 [post_content_filtered] => [post_parent] => 0 [guid] => https://withingshealthsolutions.com/?p=2083 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) ) [post_count] => 3 [current_post] => -1 [before_loop] => 1 [in_the_loop] => [post] => WP_Post Object ( [ID] => 2100 [post_author] => 11 [post_date] => 2026-01-06 15:23:33 [post_date_gmt] => 2026-01-06 15:23:33 [post_content] =>

Introduction

Wearable ECG technology is increasingly used to support ambulatory cardiac rhythm monitoring, but questions remain about how these tools fit into patients’ daily lives.

 

A recent qualitative study conducted in the Netherlands explored this issue by comparing patient experiences using a smartwatch with single-lead ECG (1L-ECG) capability and a traditional Holter monitor over the course of one week.

 

The findings offer useful insights into the practical benefits and limitations of smartwatch-based ECG monitoring and what matters most to patients when rhythm monitoring moves beyond the clinic.

Study Overview

The study included 18 adults referred for ambulatory rhythm monitoring at a diagnostic center in the Netherlands, specifically through referrals from primary care to the cardiology outpatient clinic of the Dijklander Hospital in Hoorn. Participants were aged 32–85, with a median age of 66.

 

Each participant wore both:

  • A smartwatch with 1L-ECG capability (Withings ScanWatch), and
  • A conventional chest-worn Holter monitor

for seven days. Afterward, researchers conducted semi-structured interviews to understand their experiences with usability, comfort, confidence, and perceived clinical value.

 

Rather than focusing on diagnostic accuracy, the study centred on how patients experienced the monitoring process itself, an increasingly important consideration as wearable technologies become more common in routine care.

What Patients Reported

 

Comfort and Ease of Use

Participants consistently described the smartwatch as easier to wear and less intrusive than the Holter monitor. Wearing the watch felt familiar and fit naturally into daily routines, including sleep and regular activities. In contrast, the Holter monitor’s electrodes and wiring were more noticeable and, for some, uncomfortable over time.

 

Several participants noted skin irritation or inconvenience associated with adhesive electrodes, whereas the smartwatch was generally described as something they could wear without significant disruption to daily life.

 

“It’s a bit heavier than my own smartwatch. That takes a minute to get used to, but after that you don’t even notice it anymore. It’s waterproof, so you barely notice you’re wearing it — not even at night, since I always sleep with a watch on. I don’t feel the difference anymore. Other than that, it does what it’s supposed to do: tell the time. Which is pretty handy, too.”
P16, male patient, 48 years

 

Capturing Symptoms in Real Life

One of the key differences between the two approaches is how data are captured. The Holter monitor records continuously, while the smartwatch requires users to actively initiate an ECG recording.

 

Participants appreciated having control over recordings but also expressed uncertainty about when to trigger them, particularly when symptoms were brief, unexpected, or occurred during sleep or activities like driving. This highlights a trade-off between passive continuous monitoring and more user-driven approaches.

 

Automated ECG Results: Reassurance and Uncertainty

Some participants found algorithm-based ECG feedback reassuring, especially when results were reported as normal. Others described moments of uncertainty or anxiety when the smartwatch flagged potential abnormalities without immediate clinical context.

 

This finding underscores the importance of clear patient education and pathways for clinical follow-up when wearable ECG data are shared directly with users.

 

Integration With Clinical Care

Across interviews, participants emphasized that wearable ECG data felt most valuable when it could be reviewed by a healthcare professional. Many expressed a desire for smoother integration between smartwatch ECG recordings and clinical systems, as well as clearer guidance on how and when clinicians would review their data.

 

Patients generally viewed the smartwatch as a helpful complement to traditional monitoring, particularly when combined with clinician oversight, rather than a complete replacement.

Implications for Wearable ECG Monitoring

 

Overall, the study suggests that smartwatch-based 1L-ECG monitoring is acceptable to patients and may reduce some of the burden associated with traditional Holter monitoring, particularly in terms of comfort and day-to-day wearability.

 

At the same time, the findings point to areas where wearable ECG programs can improve:

  • Providing clearer guidance on when and how to record symptoms
  • Reducing uncertainty around automated ECG interpretations
  • Ensuring timely clinician review and communication

As devices like the Withings ScanWatch continue to be used in real-world clinical settings, patient experience will remain a critical factor alongside clinical validation.

Looking Forward

This study adds to a growing body of evidence showing that wearable ECG devices can support ambulatory rhythm monitoring in ways that align more closely with everyday life. Designing these tools and the care pathways around them with patient experience in mind will be key to realizing their full potential in clinical practice.

 

For more research-driven insights on connected health and remote monitoring, explore the latest updates on the Withings blog.

Interested in partnering with us?

Contact Us [post_title] => Patient Experiences With Smartwatch ECG Monitoring Compared to Traditional Holter Devices [post_excerpt] => A recent qualitative study conducted in the Netherlands compares patient experiences using a smartwatch with single-lead ECG (1L-ECG) capability and a traditional Holter monitor over the course of one week. [post_status] => publish [comment_status] => closed [ping_status] => closed [post_password] => [post_name] => patient-experiences-with-smartwatch-ecg-monitoring-compared-to-traditional-holter-devices [to_ping] => [pinged] => [post_modified] => 2026-01-06 15:51:03 [post_modified_gmt] => 2026-01-06 15:51:03 [post_content_filtered] => [post_parent] => 0 [guid] => https://withingshealthsolutions.com/?p=2100 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [comment_count] => 0 [current_comment] => -1 [found_posts] => 54 [max_num_pages] => 18 [max_num_comment_pages] => 0 [is_single] => [is_preview] => [is_page] => [is_archive] => 1 [is_date] => [is_year] => [is_month] => [is_day] => [is_time] => [is_author] => [is_category] => 1 [is_tag] => [is_tax] => [is_search] => [is_feed] => [is_comment_feed] => [is_trackback] => [is_home] => [is_privacy_policy] => [is_404] => [is_embed] => [is_paged] => [is_admin] => [is_attachment] => [is_singular] => [is_robots] => [is_favicon] => [is_posts_page] => [is_post_type_archive] => [query_vars_hash:WP_Query:private] => e98c08aa9ad5ca45ada385d64d060b8d [query_vars_changed:WP_Query:private] => [thumbnails_cached] => [allow_query_attachment_by_filename:protected] => [stopwords:WP_Query:private] => [compat_fields:WP_Query:private] => Array ( [0] => query_vars_hash [1] => query_vars_changed ) [compat_methods:WP_Query:private] => Array ( [0] => init_query_flags [1] => parse_tax_query ) [query_cache_key:WP_Query:private] => wp_query:22765c7de53c224eebd72ca54bc38403 )
Article

Patient Experiences With Smartwatch ECG Monitoring Compared to Traditional Holter Devices

Read More
Article

What Obesity Care Programs Need to Know About WHO’s New GLP-1 Guidelines

Read More
Article

Revolutionizing Chronic Kidney Disease Management with Digital Health Tools: The Withings Case Study

Read More

Withings On-The-Go

Our patient-centric care solution utilizes portable Withings cellular devices that are not tied to a single patient. Instead, care teams can use one device to collect and transmit data for an unlimited number of individuals. The integrated cellular connectivity automatically directs the data into the correct patient’s medical record, simplifying data collection and improving care delivery regardless of the setting.